organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o871-o872

5,11,17,23-Tetra­bromo-25,26,27,28-tetra­kis(4-tolyl­sulfon­yl­oxy)-2,8,14,20-tetra­thia­calix[4]arene di­chloro­methane solvate

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: chdsguo@sdnu.edu.cn

(Received 5 March 2010; accepted 12 March 2010; online 20 March 2010)

In the crystal structure of the title compound, C52H36Br4O12S8·CH2Cl2, the thia­calix[4]arene unit adopts a 1,3-alternate conformation with an intra­molecular C—H⋯O hydrogen bond and four C—H⋯π inter­actions, with the four 4-MeC6H4SO3 groups located alternately above and below the virtual plane (R) defined by the four bridging S atoms. The benzene ring of each 4-MeC6H4SO3 unit is nearly perpendicular to one of the two neighboring phenol rings with inter­planar angles varying from 72.97 (13) to 78.70 (13)°, while the dihedral angles between the plane (R) and the phenol rings range from 83.04 (7) to 84.30 (9)°. In the supra­molecular structure, a solvent-bridged dimer composed of two main mol­ecules is formed by four inter­molecular C—H⋯O hydrogen bonds and locally creates an R44(26) motif. Such dimers associate further into chains by inter­dimer C—Cl⋯O short contacts [Cl⋯O 3.182 (5) Å]. Finally, these chains are linked into a two-dimensional network by a combination of inter­chain C—Br⋯O inter­actions [Br⋯O = 3.183 (3) and 2.966 (4) Å] as well as C—H⋯O hydrogen bonds.

Related literature

For general background to the chemistry of thia­calix[4]arenes, see: Kumagai et al. (1997[Kumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H. & Miyano, S. (1997). Tetrahedron Lett. 38, 3971-3972.]); Shokova & Kovalev (2003[Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1-28.]); Lhoták (2004[Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675-1692.]); Morohashi et al. (2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]); Guo et al. (2007[Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221-1224.]). For the synthesis and related structures, see: Lhoták et al. (2001[Lhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107-7110.]); Kasyan et al. (2003[Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167-7170.]); Xu et al. (2008[Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349-o352.]). For C—H⋯π inter­actions, see: Tsuzuki et al. (2000[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746-3753.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For C—X⋯O (X = Cl, Br) short contacts, see: Lommerse et al. (1996[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108-3116.]); Metrangolo & Resnati (2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]). For atomic radii, see: Bondi (1964[Bondi, A. J. (1964). Chem. Phys. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • C52H36Br4O12S8·CH2Cl2

  • Mr = 1513.85

  • Monoclinic, P 21 /c

  • a = 12.6945 (14) Å

  • b = 20.793 (2) Å

  • c = 23.190 (3) Å

  • β = 103.350 (2)°

  • V = 5955.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 173 K

  • 0.30 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.453, Tmax = 0.705

  • 30976 measured reflections

  • 11092 independent reflections

  • 7807 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.06

  • 11092 reflections

  • 715 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C14–C19, C1–C6, C51–C56 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O8 0.95 2.51 3.303 (5) 141
C53—H53A⋯O5i 0.99 2.38 3.175 (5) 137
C53—H53B⋯O4ii 0.99 2.37 3.249 (5) 147
C17—H17⋯O2iii 0.95 2.38 3.266 (5) 155
C10—H10⋯Cg1 0.95 2.75 3.698 (1) 178
C23—H23⋯Cg2 0.95 2.65 3.602 (1) 176
C30—H30⋯Cg3 0.95 2.80 3.742 (1) 174
C41—H41⋯Cg4 0.95 2.85 3.794 (1) 172
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiacalix[4]arenes have attracted considerable interest in recent years as versatile scaffolds for highly organized receptors (Kumagai et al., 1997; Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Guo et al., 2007). Moreover, they are able to undergo electrophilic bromination at the upper rim and generate the corresponding dibromo or tetrabromo thiacalix[4]arene derivatives (Lhoták et al., 2001; Kasyan et al., 2003; Xu et al., 2008), which can be further applied to construct more elaborate receptors as well as novel supramolecular systems. We report here the crystal structure of a new tetrabromo thiacalix[4]arene derivative, 5,11,17,23-tetrabromo-25,26,27,28-tetrakis(4-toluenesulfonyloxy)-2,8,14,20-tetrathiacalix[4]arene dichloromethylene solvate.

In the crystal structure of the title compound, as shown in Fig. 1, the thiacalix[4]arene platform adopts a 1,3-alternate conformation in which the four 4-MeC6H4SO3 groups are located alternately above and below the virtual plane (R) defined by four bridging S atoms. The dihedral angles between the plane (R) and the phenol rings vary from 83.04 (7) to 84.30 (9)°. Such an arrangement is different from that of its analogue where four OCH2CO2Me moieties replace the four 4-MeC6H4SO3 units, possessing a partial cone conformation (Xu et al., 2008). Interestingly, four C—H···π interactions as well as one intramolecular C12—H12···O8 hydrogen bond (Table 1) in each thiacalix[4]arene molecule result in the benzene ring of each 4-MeC6H4SO3 group leaning aslant and being nearly perpendicular to one of both neighboring phenolic rings, with dihedral angles ranging from 72.97 (13) to 78.70 (13)°. The distances of H10···Cg1, H23···Cg2, H30···Cg3 and H41···Cg4 (Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings C14–C19, C1–C6, C51–C56 and C33–C38, respectively) are 2.749 (1), 2.654 (1), 2.795 (1) and 2.851 (1) Å , respectively, which are consistent with the calculations for such interactions conducted by Tsuzuki et al. (2000).

In the supramolecular structure, non-classical C—H···O hydrogen bonds (Table 1) and C—X···O (X = Cl, Br) short contacts (Lommerse et al. 1996; Metrangolo & Resnati, 2001) are observed. Pairs of the thiacalix[4]arene molecules are bridged by two dichloromethylene solvents with four intermolecular C—H···O hydrogen bonds and form a solvent-bridged centrosymmetric dimer (Fig. 2), locally creating an R44(26) motif (Bernstein et al., 1995) from atoms C53—H53A and C53—H53B at (x, y, z) and (-x, -y + 2, -z), respectively, acting as hydrogen-bond donors to atoms O5 at (-x + 1, -y +2, -z) and (x - 1, y, z), and O4 at (x - 1, y, z) and (-x + 1, -y +2, -z). Such dimers associate further into one-dimensional chains (Fig. 3), approximatively along the crystallographic b axis, by interdimer C53—Cl2···O1 short contacts (Metrangolo et al. 2001). Finally, these chains are linked into a two-dimensional network by a combination of interchain C11—Br1···O2 and C29—Br2···O1 interactions as well as C17—H17···O2 hydrogen bonds (Table 1). The separations between Cl2 and O1, Br1 at (-x + 1, y - 1/2, -z + 1/2) and O2, and Br2 at (-x + 1, y - 1/2, -z + 1/2) and O1 are 3.182 (5), 3.183 (3) and 2.966 (4) Å, respectively, which are shorter than the sum of the van derWaals radii of the halogen and O atoms (O = 1.52 Å, Br = 1.85 Å, Cl = 1.75 Å; Bondi, 1964).

Related literature top

For general background to the chemistry of thiacalix[4]arenes, see: Kumagai et al. (1997); Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006); Guo et al. (2007). For the synthesis and related structures, see: Lhoták et al. (2001); Kasyan et al. (2003); Xu et al. (2008). For C—H···π interactions, see: Tsuzuki et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—X···O (X = Cl, Br) short contacts, see: Lommerse et al. (1996); Metrangolo & Resnati (2001). For atomic radii, see: Bondi (1964).

Experimental top

A suspension of p-tetrabromothiacalix[4]arene (0.250 g, 0.308 mmol), anhydrous Cs2CO3 (0.610 g, 1.846 mmol) and p-toluenesulfonyl chloride (0.620 g, 3.078 mmol) in dry acetonitrile (15 ml) was refluxed for 20 h and cooled to room temperature. After removal of the volatile under reduced pressure, the residue was neutralized with 5% aqueous HCl and extracted with CH2Cl2. The organic layer was washed with saturated sodium hydrogen carbonate and brine, and dried over anhydrous MgSO4. After removal of the solvent under reduced pressure, the residue was purified by flash column chromatography (silica gel, ethyl acetate/hexane = 1:5, Rf = 0.5) to give the title compound in 58 % yield as a white solid. 1H NMR (300 MHz, CDCl3): δ 8.00 (d, 8H, J = 8.03 Hz), 7.51 (d, 8H, J = 8.00 Hz), 7.28 (s, 8H), 2.55 (s, 12H). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH3OH and CH2Cl2 at 273 K.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the hydrogen-bonded dimer of the title compound approximatively along the b axis with an R44(26) motif. Some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iv) -x, -y + 2, -z].
[Figure 3] Fig. 3. A view of the one-dimensional chain of the dimers approximatively along the b axis. Some hydrogen atoms are omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x - 1, y, z; (iv) -x, -y + 2, -z].
5,11,17,23-Tetrabromo-25,26,27,28-tetrakis(4-tolylsulfonyloxy)-2,8,14,20- tetrathiacalix[4]arene dichloromethane solvate top
Crystal data top
C52H36Br4O12S8·CH2Cl2F(000) = 3016
Mr = 1513.85Dx = 1.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7685 reflections
a = 12.6945 (14) Åθ = 2.4–26.5°
b = 20.793 (2) ŵ = 3.13 mm1
c = 23.190 (3) ÅT = 173 K
β = 103.350 (2)°Block, colourless
V = 5955.8 (12) Å30.30 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
11092 independent reflections
Radiation source: fine-focus sealed tube7807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1015
Tmin = 0.453, Tmax = 0.705k = 2525
30976 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
11092 reflections(Δ/σ)max = 0.002
715 parametersΔρmax = 0.86 e Å3
6 restraintsΔρmin = 0.68 e Å3
Crystal data top
C52H36Br4O12S8·CH2Cl2V = 5955.8 (12) Å3
Mr = 1513.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6945 (14) ŵ = 3.13 mm1
b = 20.793 (2) ÅT = 173 K
c = 23.190 (3) Å0.30 × 0.21 × 0.12 mm
β = 103.350 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
11092 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
7807 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.705Rint = 0.039
30976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.86 e Å3
11092 reflectionsΔρmin = 0.68 e Å3
715 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.43943 (3)1.109304 (19)0.27234 (2)0.04887 (13)
Br31.02769 (5)0.78011 (2)0.30945 (3)0.07916 (19)
Br40.95485 (4)0.83143 (2)0.11261 (3)0.07435 (18)
C10.7126 (4)0.72823 (17)0.15746 (18)0.0462 (10)
H10.75600.72130.19620.055*
C20.7437 (4)0.70462 (18)0.1088 (2)0.0532 (11)
H20.80950.68120.11420.064*
C30.6821 (4)0.7139 (2)0.0523 (2)0.0566 (12)
C40.5861 (4)0.7474 (2)0.0453 (2)0.0592 (13)
H40.54220.75360.00650.071*
C50.5526 (4)0.77185 (18)0.09320 (19)0.0499 (11)
H50.48630.79480.08780.060*
C60.6169 (3)0.76234 (16)0.14918 (17)0.0395 (9)
C70.7211 (5)0.6888 (3)0.0003 (2)0.0857 (18)
H7A0.70780.64240.00420.129*
H7B0.79880.69720.00560.129*
H7C0.68180.71060.03640.129*
C80.5929 (3)0.91727 (15)0.23204 (15)0.0294 (8)
C90.5510 (3)0.95961 (16)0.18624 (15)0.0289 (8)
C100.5032 (3)1.01623 (16)0.19828 (16)0.0320 (8)
H100.47441.04560.16730.038*
C110.4978 (3)1.02969 (16)0.25583 (17)0.0336 (8)
C120.5404 (3)0.98801 (16)0.30179 (16)0.0327 (8)
H120.53620.99810.34120.039*
C130.5890 (3)0.93175 (16)0.29019 (16)0.0315 (8)
C140.4205 (3)1.08761 (18)0.03965 (16)0.0368 (9)
H140.43551.05570.01330.044*
C150.3154 (3)1.1000 (2)0.04305 (18)0.0469 (10)
H150.25761.07770.01760.056*
C160.2926 (4)1.1446 (2)0.0831 (2)0.0539 (12)
C170.3775 (4)1.1780 (2)0.11757 (19)0.0545 (12)
H170.36291.20910.14460.065*
C180.4823 (4)1.16789 (19)0.11438 (17)0.0478 (10)
H180.53961.19180.13860.057*
C190.5034 (3)1.12220 (17)0.07513 (16)0.0329 (8)
C200.1768 (4)1.1552 (3)0.0878 (3)0.0891 (19)
H20A0.16731.13800.12560.134*
H20B0.12751.13310.05500.134*
H20C0.16071.20130.08570.134*
C210.7461 (3)1.01215 (16)0.12285 (14)0.0301 (8)
C220.6975 (3)0.95190 (17)0.11682 (15)0.0319 (8)
C230.7602 (3)0.89818 (17)0.11292 (16)0.0362 (9)
H230.72810.85670.10800.043*
C240.8693 (3)0.90537 (17)0.11629 (17)0.0399 (9)
C250.9191 (3)0.96488 (17)0.12485 (16)0.0354 (9)
H250.99480.96870.12800.043*
C260.8572 (3)1.01866 (16)0.12870 (15)0.0303 (8)
C270.9046 (3)1.10806 (16)0.21337 (16)0.0308 (8)
C280.8342 (3)1.15600 (16)0.22221 (16)0.0337 (8)
H280.79581.18100.18990.040*
C290.8207 (3)1.16681 (17)0.27889 (18)0.0385 (9)
C300.8731 (3)1.13048 (17)0.32628 (17)0.0373 (9)
H300.86191.13860.36470.045*
C310.9428 (3)1.08162 (16)0.31765 (15)0.0312 (8)
C320.9604 (3)1.07211 (15)0.26131 (15)0.0292 (8)
C331.2307 (3)0.99037 (18)0.30119 (17)0.0382 (9)
C341.2480 (3)0.9286 (2)0.2833 (2)0.0501 (11)
H341.21920.91570.24350.060*
C351.3071 (4)0.8862 (2)0.3234 (3)0.0652 (14)
H351.31840.84370.31110.078*
C361.3498 (4)0.9038 (3)0.3804 (2)0.0649 (14)
C371.3352 (4)0.9664 (3)0.39852 (19)0.0617 (13)
H371.36660.97930.43810.074*
C381.2746 (3)1.0102 (2)0.35870 (18)0.0491 (10)
H381.26361.05280.37080.059*
C391.4138 (5)0.8562 (3)0.4245 (3)0.0962 (19)
H39A1.36370.82770.43870.144*
H39B1.45840.87960.45810.144*
H39C1.46060.83060.40520.144*
C400.9434 (3)0.95975 (17)0.36111 (15)0.0347 (8)
C411.0005 (3)0.90881 (19)0.34477 (17)0.0423 (10)
H411.07360.91430.34220.051*
C420.9503 (4)0.85022 (19)0.33231 (18)0.0475 (11)
C430.8436 (3)0.84099 (18)0.33341 (17)0.0423 (10)
H430.81000.80040.32310.051*
C440.7854 (3)0.89146 (17)0.34975 (16)0.0350 (9)
C450.8365 (3)0.95058 (16)0.36448 (15)0.0330 (8)
C460.8028 (3)1.08666 (18)0.46528 (16)0.0371 (9)
C470.7283 (3)1.1358 (2)0.44931 (18)0.0463 (10)
H470.65651.12670.42800.056*
C480.7595 (4)1.1981 (2)0.46472 (19)0.0510 (11)
H480.70861.23200.45370.061*
C490.8637 (4)1.2122 (2)0.49601 (19)0.0519 (11)
C500.9368 (4)1.1623 (2)0.51078 (18)0.0512 (11)
H501.00861.17150.53190.061*
C510.9084 (3)1.0994 (2)0.49574 (17)0.0451 (10)
H510.95981.06560.50600.054*
C520.8968 (4)1.2802 (2)0.5135 (2)0.0706 (15)
H52A0.93421.28140.55550.106*
H52B0.83231.30760.50710.106*
H52C0.94541.29600.48940.106*
C530.2434 (4)0.9546 (2)0.0855 (2)0.0602 (12)
H53A0.30400.96360.06640.072*
H53B0.24420.98810.11600.072*
Cl10.12058 (11)0.95976 (7)0.03170 (6)0.0723 (4)
Cl20.26337 (14)0.88004 (7)0.11968 (7)0.0922 (5)
O31.1686 (2)1.10828 (12)0.27040 (13)0.0498 (7)
O41.1667 (2)1.02640 (14)0.19338 (12)0.0513 (7)
O50.6387 (2)1.07104 (15)0.01904 (12)0.0562 (8)
O60.6901 (2)1.16960 (14)0.07755 (16)0.0691 (10)
O70.8372 (2)0.96353 (13)0.48243 (11)0.0497 (7)
O80.6506 (2)1.00265 (14)0.44481 (12)0.0502 (7)
O90.6457 (2)0.86122 (10)0.21968 (10)0.0335 (6)
O101.03130 (18)1.02329 (11)0.25253 (10)0.0317 (5)
O110.68364 (19)1.06686 (11)0.12749 (10)0.0326 (6)
O120.77790 (19)1.00232 (11)0.38031 (10)0.0337 (6)
S10.57961 (10)0.79407 (4)0.21118 (5)0.0466 (3)
S20.55608 (7)0.94214 (4)0.11169 (4)0.0335 (2)
S30.63585 (8)1.10942 (5)0.06895 (5)0.0420 (2)
S40.92238 (8)1.09501 (4)0.14036 (4)0.0339 (2)
S51.15421 (7)1.04388 (4)0.25031 (4)0.0362 (2)
S61.01038 (8)1.03516 (5)0.37934 (4)0.0379 (2)
S70.76318 (8)1.00733 (5)0.44783 (4)0.0392 (2)
S80.64672 (8)0.88001 (4)0.35001 (4)0.0373 (2)
Br20.72092 (4)1.23092 (2)0.29012 (2)0.06032 (15)
O10.4687 (3)0.80924 (14)0.19888 (16)0.0672 (9)
O20.6272 (3)0.75471 (13)0.26017 (13)0.0712 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0508 (3)0.0352 (2)0.0657 (3)0.01028 (19)0.0236 (2)0.00070 (19)
Br30.0827 (4)0.0475 (3)0.1215 (5)0.0245 (3)0.0525 (4)0.0012 (3)
Br40.0645 (3)0.0421 (3)0.1291 (5)0.0083 (2)0.0485 (3)0.0082 (3)
C10.063 (3)0.0278 (19)0.042 (2)0.001 (2)0.001 (2)0.0005 (17)
C20.067 (3)0.032 (2)0.063 (3)0.008 (2)0.020 (2)0.005 (2)
C30.088 (4)0.036 (2)0.047 (3)0.004 (2)0.018 (3)0.009 (2)
C40.088 (4)0.039 (2)0.042 (3)0.010 (2)0.002 (2)0.008 (2)
C50.055 (3)0.032 (2)0.056 (3)0.005 (2)0.000 (2)0.002 (2)
C60.052 (3)0.0226 (18)0.044 (2)0.0067 (18)0.0112 (19)0.0026 (16)
C70.137 (6)0.071 (3)0.058 (3)0.007 (4)0.039 (3)0.017 (3)
C80.0299 (19)0.0239 (17)0.035 (2)0.0016 (15)0.0095 (16)0.0010 (15)
C90.0266 (19)0.0302 (18)0.030 (2)0.0076 (15)0.0079 (15)0.0013 (15)
C100.0252 (19)0.0309 (19)0.040 (2)0.0003 (15)0.0080 (16)0.0081 (16)
C110.029 (2)0.0266 (18)0.047 (2)0.0013 (15)0.0130 (17)0.0020 (16)
C120.032 (2)0.0342 (19)0.034 (2)0.0020 (16)0.0124 (16)0.0034 (16)
C130.032 (2)0.0303 (19)0.034 (2)0.0035 (16)0.0101 (16)0.0032 (16)
C140.037 (2)0.042 (2)0.031 (2)0.0025 (18)0.0068 (17)0.0034 (17)
C150.040 (2)0.055 (3)0.042 (2)0.002 (2)0.0028 (19)0.006 (2)
C160.049 (3)0.064 (3)0.054 (3)0.017 (2)0.023 (2)0.020 (2)
C170.073 (3)0.052 (3)0.041 (3)0.026 (2)0.018 (2)0.000 (2)
C180.057 (3)0.044 (2)0.038 (2)0.007 (2)0.002 (2)0.0011 (19)
C190.032 (2)0.0336 (19)0.032 (2)0.0029 (16)0.0068 (16)0.0079 (16)
C200.060 (3)0.109 (5)0.108 (5)0.034 (3)0.040 (3)0.035 (4)
C210.035 (2)0.0316 (19)0.0241 (19)0.0019 (16)0.0073 (15)0.0024 (15)
C220.037 (2)0.037 (2)0.0225 (18)0.0049 (17)0.0066 (15)0.0025 (15)
C230.045 (2)0.0304 (19)0.037 (2)0.0047 (17)0.0159 (18)0.0014 (16)
C240.047 (2)0.034 (2)0.043 (2)0.0083 (18)0.0188 (19)0.0041 (17)
C250.035 (2)0.040 (2)0.034 (2)0.0008 (17)0.0138 (17)0.0012 (17)
C260.035 (2)0.0304 (18)0.0269 (19)0.0054 (16)0.0096 (15)0.0014 (15)
C270.031 (2)0.0266 (18)0.036 (2)0.0074 (15)0.0106 (16)0.0025 (15)
C280.034 (2)0.0278 (18)0.041 (2)0.0032 (16)0.0124 (17)0.0024 (16)
C290.033 (2)0.0295 (19)0.055 (3)0.0014 (16)0.0162 (19)0.0009 (18)
C300.039 (2)0.036 (2)0.039 (2)0.0001 (18)0.0154 (18)0.0060 (17)
C310.030 (2)0.0311 (18)0.032 (2)0.0011 (16)0.0057 (15)0.0013 (15)
C320.0292 (19)0.0236 (17)0.036 (2)0.0025 (15)0.0094 (16)0.0028 (15)
C330.032 (2)0.043 (2)0.042 (2)0.0081 (18)0.0144 (17)0.0014 (18)
C340.049 (3)0.047 (2)0.058 (3)0.005 (2)0.020 (2)0.000 (2)
C350.063 (3)0.053 (3)0.089 (4)0.021 (2)0.036 (3)0.016 (3)
C360.054 (3)0.079 (4)0.072 (4)0.028 (3)0.036 (3)0.033 (3)
C370.043 (3)0.107 (4)0.036 (3)0.009 (3)0.012 (2)0.010 (3)
C380.041 (2)0.062 (3)0.046 (3)0.005 (2)0.014 (2)0.005 (2)
C390.091 (4)0.111 (4)0.093 (4)0.030 (3)0.035 (3)0.044 (3)
C400.041 (2)0.037 (2)0.027 (2)0.0070 (17)0.0105 (16)0.0078 (16)
C410.041 (2)0.047 (2)0.043 (2)0.0112 (19)0.0201 (19)0.0078 (19)
C420.057 (3)0.039 (2)0.051 (3)0.020 (2)0.021 (2)0.0051 (19)
C430.057 (3)0.033 (2)0.039 (2)0.0083 (19)0.016 (2)0.0041 (17)
C440.041 (2)0.034 (2)0.031 (2)0.0066 (17)0.0105 (17)0.0056 (16)
C450.041 (2)0.0326 (19)0.0262 (19)0.0104 (17)0.0091 (16)0.0059 (15)
C460.040 (2)0.041 (2)0.033 (2)0.0027 (18)0.0123 (17)0.0044 (17)
C470.040 (2)0.052 (3)0.048 (3)0.005 (2)0.0128 (19)0.008 (2)
C480.053 (3)0.047 (2)0.057 (3)0.009 (2)0.022 (2)0.005 (2)
C490.064 (3)0.052 (3)0.048 (3)0.008 (2)0.029 (2)0.014 (2)
C500.043 (3)0.069 (3)0.042 (3)0.008 (2)0.010 (2)0.011 (2)
C510.050 (3)0.050 (2)0.034 (2)0.006 (2)0.0080 (19)0.0065 (19)
C520.084 (4)0.057 (3)0.077 (4)0.018 (3)0.032 (3)0.023 (3)
C530.063 (3)0.071 (3)0.054 (3)0.004 (3)0.028 (2)0.005 (2)
Cl10.0642 (8)0.0817 (9)0.0734 (9)0.0079 (7)0.0210 (7)0.0129 (7)
Cl20.1032 (12)0.0880 (10)0.0814 (11)0.0135 (9)0.0135 (8)0.0221 (8)
O30.0345 (16)0.0359 (15)0.079 (2)0.0035 (12)0.0133 (14)0.0007 (14)
O40.0414 (17)0.076 (2)0.0404 (16)0.0152 (15)0.0182 (13)0.0060 (14)
O50.0519 (18)0.087 (2)0.0340 (16)0.0226 (16)0.0194 (13)0.0147 (15)
O60.0445 (19)0.0490 (18)0.108 (3)0.0096 (15)0.0045 (17)0.0377 (18)
O70.064 (2)0.0514 (17)0.0335 (16)0.0069 (15)0.0114 (13)0.0064 (13)
O80.0486 (18)0.0607 (18)0.0476 (17)0.0062 (15)0.0242 (14)0.0130 (14)
O90.0419 (15)0.0242 (12)0.0362 (14)0.0009 (11)0.0124 (12)0.0009 (10)
O100.0299 (13)0.0293 (13)0.0365 (14)0.0017 (10)0.0088 (11)0.0030 (10)
O110.0349 (14)0.0299 (13)0.0316 (14)0.0035 (11)0.0047 (11)0.0047 (10)
O120.0375 (15)0.0351 (13)0.0298 (14)0.0077 (11)0.0106 (11)0.0000 (11)
S10.0672 (8)0.0267 (5)0.0518 (7)0.0111 (5)0.0257 (6)0.0016 (4)
S20.0339 (5)0.0351 (5)0.0306 (5)0.0054 (4)0.0057 (4)0.0000 (4)
S30.0364 (6)0.0448 (6)0.0452 (6)0.0024 (5)0.0104 (5)0.0167 (5)
S40.0348 (5)0.0349 (5)0.0333 (5)0.0059 (4)0.0106 (4)0.0016 (4)
S50.0310 (5)0.0398 (5)0.0397 (6)0.0021 (4)0.0124 (4)0.0005 (4)
S60.0362 (5)0.0461 (5)0.0315 (5)0.0035 (4)0.0082 (4)0.0009 (4)
S70.0444 (6)0.0439 (5)0.0321 (5)0.0015 (5)0.0146 (4)0.0026 (4)
S80.0449 (6)0.0352 (5)0.0335 (5)0.0013 (4)0.0127 (4)0.0074 (4)
Br20.0705 (3)0.0490 (3)0.0703 (3)0.0274 (2)0.0344 (3)0.0062 (2)
O10.058 (2)0.0509 (18)0.103 (3)0.0244 (16)0.0409 (19)0.0173 (18)
O20.140 (3)0.0304 (15)0.049 (2)0.0058 (18)0.034 (2)0.0075 (14)
Geometric parameters (Å, º) top
Br1—C111.888 (3)C30—C311.391 (5)
Br3—C421.900 (4)C30—H300.9500
Br4—C241.896 (4)C31—C321.389 (5)
C1—C21.370 (6)C31—S61.775 (4)
C1—C61.381 (5)C32—O101.403 (4)
C1—H10.9500C33—C341.382 (5)
C2—C31.376 (6)C33—C381.384 (5)
C2—H20.9500C33—S51.745 (4)
C3—C41.380 (7)C34—C351.373 (6)
C3—C71.510 (6)C34—H340.9500
C4—C51.377 (6)C35—C361.357 (7)
C4—H40.9500C35—H350.9500
C5—C61.379 (6)C36—C371.394 (7)
C5—H50.9500C36—C391.518 (7)
C6—S11.744 (4)C37—C381.395 (6)
C7—H7A0.9800C37—H370.9500
C7—H7B0.9800C38—H380.9500
C7—H7C0.9800C39—H39A0.9800
C8—C91.387 (5)C39—H39B0.9800
C8—C131.394 (5)C39—H39C0.9800
C8—O91.407 (4)C40—C411.385 (5)
C9—C101.382 (5)C40—C451.391 (5)
C9—S21.782 (3)C40—S61.787 (4)
C10—C111.381 (5)C41—C421.374 (6)
C10—H100.9500C41—H410.9500
C11—C121.383 (5)C42—C431.375 (6)
C12—C131.377 (5)C43—C441.386 (5)
C12—H120.9500C43—H430.9500
C13—S81.775 (4)C44—C451.395 (5)
C14—C151.378 (5)C44—S81.778 (4)
C14—C191.379 (5)C45—O121.404 (4)
C14—H140.9500C46—C471.383 (5)
C15—C161.389 (6)C46—C511.389 (6)
C15—H150.9500C46—S71.744 (4)
C16—C171.373 (6)C47—C481.378 (6)
C16—C201.515 (6)C47—H470.9500
C17—C181.365 (6)C48—C491.385 (6)
C17—H170.9500C48—H480.9500
C18—C191.384 (5)C49—C501.383 (6)
C18—H180.9500C49—C521.504 (6)
C19—S31.741 (4)C50—C511.380 (6)
C20—H20A0.9800C50—H500.9500
C20—H20B0.9800C51—H510.9500
C20—H20C0.9800C52—H52A0.9800
C21—C221.389 (5)C52—H52B0.9800
C21—C261.391 (5)C52—H52C0.9800
C21—O111.405 (4)C53—Cl21.734 (5)
C22—C231.387 (5)C53—Cl11.760 (5)
C22—S21.783 (4)C53—H53A0.9900
C23—C241.378 (5)C53—H53B0.9900
C23—H230.9500O3—S51.416 (3)
C24—C251.383 (5)O4—S51.413 (3)
C25—C261.382 (5)O5—S31.413 (3)
C25—H250.9500O6—S31.420 (3)
C26—S41.782 (3)O7—S71.417 (3)
C27—C281.385 (5)O8—S71.418 (3)
C27—C321.390 (5)O9—S11.618 (2)
C27—S41.780 (4)O10—S51.630 (2)
C28—C291.383 (5)O11—S31.617 (2)
C28—H280.9500O12—S71.623 (2)
C29—C301.372 (5)S1—O11.407 (3)
C29—Br21.898 (3)S1—O21.417 (3)
C2—C1—C6118.8 (4)C34—C33—S5119.4 (3)
C2—C1—H1120.6C38—C33—S5119.9 (3)
C6—C1—H1120.6C35—C34—C33119.5 (4)
C1—C2—C3121.7 (4)C35—C34—H34120.2
C1—C2—H2119.1C33—C34—H34120.2
C3—C2—H2119.1C36—C35—C34121.3 (5)
C2—C3—C4118.4 (4)C36—C35—H35119.3
C2—C3—C7120.0 (5)C34—C35—H35119.3
C4—C3—C7121.6 (5)C35—C36—C37119.7 (4)
C5—C4—C3121.4 (4)C35—C36—C39120.8 (5)
C5—C4—H4119.3C37—C36—C39119.5 (5)
C3—C4—H4119.3C36—C37—C38120.1 (4)
C4—C5—C6118.8 (4)C36—C37—H37120.0
C4—C5—H5120.6C38—C37—H37120.0
C6—C5—H5120.6C33—C38—C37118.8 (4)
C5—C6—C1121.0 (4)C33—C38—H38120.6
C5—C6—S1120.5 (3)C37—C38—H38120.6
C1—C6—S1118.5 (3)C36—C39—H39A109.5
C3—C7—H7A109.5C36—C39—H39B109.5
C3—C7—H7B109.5H39A—C39—H39B109.5
H7A—C7—H7B109.5C36—C39—H39C109.5
C3—C7—H7C109.5H39A—C39—H39C109.5
H7A—C7—H7C109.5H39B—C39—H39C109.5
H7B—C7—H7C109.5C41—C40—C45119.3 (4)
C9—C8—C13120.7 (3)C41—C40—S6119.0 (3)
C9—C8—O9119.1 (3)C45—C40—S6121.6 (3)
C13—C8—O9120.1 (3)C42—C41—C40119.3 (4)
C10—C9—C8119.6 (3)C42—C41—H41120.4
C10—C9—S2119.0 (3)C40—C41—H41120.4
C8—C9—S2121.3 (3)C41—C42—C43122.1 (3)
C11—C10—C9119.4 (3)C41—C42—Br3119.6 (3)
C11—C10—H10120.3C43—C42—Br3118.2 (3)
C9—C10—H10120.3C42—C43—C44119.3 (4)
C10—C11—C12121.3 (3)C42—C43—H43120.3
C10—C11—Br1118.9 (3)C44—C43—H43120.3
C12—C11—Br1119.7 (3)C43—C44—C45119.2 (3)
C13—C12—C11119.7 (3)C43—C44—S8119.4 (3)
C13—C12—H12120.2C45—C44—S8121.5 (3)
C11—C12—H12120.2C40—C45—C44120.8 (3)
C12—C13—C8119.3 (3)C40—C45—O12119.5 (3)
C12—C13—S8119.0 (3)C44—C45—O12119.6 (3)
C8—C13—S8121.7 (3)C47—C46—C51121.1 (4)
C15—C14—C19118.9 (4)C47—C46—S7119.6 (3)
C15—C14—H14120.5C51—C46—S7119.4 (3)
C19—C14—H14120.5C48—C47—C46119.2 (4)
C14—C15—C16121.1 (4)C48—C47—H47120.4
C14—C15—H15119.4C46—C47—H47120.4
C16—C15—H15119.4C47—C48—C49121.2 (4)
C17—C16—C15118.0 (4)C47—C48—H48119.4
C17—C16—C20122.0 (5)C49—C48—H48119.4
C15—C16—C20120.0 (5)C50—C49—C48118.4 (4)
C18—C17—C16122.3 (4)C50—C49—C52120.6 (4)
C18—C17—H17118.8C48—C49—C52121.0 (4)
C16—C17—H17118.8C51—C50—C49121.9 (4)
C17—C18—C19118.7 (4)C51—C50—H50119.0
C17—C18—H18120.7C49—C50—H50119.0
C19—C18—H18120.7C50—C51—C46118.3 (4)
C14—C19—C18120.9 (4)C50—C51—H51120.9
C14—C19—S3119.3 (3)C46—C51—H51120.9
C18—C19—S3119.7 (3)C49—C52—H52A109.5
C16—C20—H20A109.5C49—C52—H52B109.5
C16—C20—H20B109.5H52A—C52—H52B109.5
H20A—C20—H20B109.5C49—C52—H52C109.5
C16—C20—H20C109.5H52A—C52—H52C109.5
H20A—C20—H20C109.5H52B—C52—H52C109.5
H20B—C20—H20C109.5Cl2—C53—Cl1113.0 (3)
C22—C21—C26121.0 (3)Cl2—C53—H53A109.0
C22—C21—O11119.5 (3)Cl1—C53—H53A109.0
C26—C21—O11119.4 (3)Cl2—C53—H53B109.0
C23—C22—C21119.0 (3)Cl1—C53—H53B109.0
C23—C22—S2119.2 (3)H53A—C53—H53B107.8
C21—C22—S2121.8 (3)C8—O9—S1118.8 (2)
C24—C23—C22119.6 (3)C32—O10—S5117.8 (2)
C24—C23—H23120.2C21—O11—S3119.2 (2)
C22—C23—H23120.2C45—O12—S7119.2 (2)
C23—C24—C25121.7 (3)O1—S1—O2120.9 (2)
C23—C24—Br4119.2 (3)O1—S1—O9107.33 (15)
C25—C24—Br4119.0 (3)O2—S1—O9106.71 (17)
C26—C25—C24119.0 (3)O1—S1—C6111.5 (2)
C26—C25—H25120.5O2—S1—C6107.20 (19)
C24—C25—H25120.5O9—S1—C6101.25 (15)
C25—C26—C21119.6 (3)C9—S2—C2299.98 (16)
C25—C26—S4118.6 (3)O5—S3—O6120.6 (2)
C21—C26—S4121.8 (3)O5—S3—O11107.63 (15)
C28—C27—C32119.7 (3)O6—S3—O11106.77 (17)
C28—C27—S4118.6 (3)O5—S3—C19111.19 (18)
C32—C27—S4121.7 (3)O6—S3—C19107.50 (18)
C29—C28—C27118.9 (3)O11—S3—C19101.35 (15)
C29—C28—H28120.5C27—S4—C2697.10 (15)
C27—C28—H28120.5O4—S5—O3121.12 (18)
C30—C29—C28121.9 (3)O4—S5—O10106.07 (15)
C30—C29—Br2119.5 (3)O3—S5—O10106.85 (14)
C28—C29—Br2118.5 (3)O4—S5—C33107.62 (17)
C29—C30—C31119.6 (3)O3—S5—C33111.79 (19)
C29—C30—H30120.2O10—S5—C33101.43 (15)
C31—C30—H30120.2C31—S6—C4099.90 (17)
C32—C31—C30119.0 (3)O7—S7—O8120.84 (18)
C32—C31—S6121.9 (3)O7—S7—O12107.23 (14)
C30—C31—S6119.1 (3)O8—S7—O12106.70 (15)
C31—C32—C27120.8 (3)O7—S7—C46111.01 (18)
C31—C32—O10119.2 (3)O8—S7—C46108.04 (17)
C27—C32—O10119.9 (3)O12—S7—C46101.15 (15)
C34—C33—C38120.6 (4)C13—S8—C4498.43 (16)
C6—C1—C2—C30.1 (6)C41—C42—C43—C442.5 (6)
C1—C2—C3—C40.8 (7)Br3—C42—C43—C44179.8 (3)
C1—C2—C3—C7178.1 (4)C42—C43—C44—C450.3 (5)
C2—C3—C4—C50.9 (7)C42—C43—C44—S8179.0 (3)
C7—C3—C4—C5178.0 (4)C41—C40—C45—C442.1 (5)
C3—C4—C5—C60.1 (6)S6—C40—C45—C44179.6 (3)
C4—C5—C6—C10.9 (6)C41—C40—C45—O12179.2 (3)
C4—C5—C6—S1178.4 (3)S6—C40—C45—O122.5 (4)
C2—C1—C6—C51.0 (6)C43—C44—C45—C402.0 (5)
C2—C1—C6—S1178.3 (3)S8—C44—C45—C40176.7 (3)
C13—C8—C9—C101.2 (5)C43—C44—C45—O12179.1 (3)
O9—C8—C9—C10177.1 (3)S8—C44—C45—O120.4 (5)
C13—C8—C9—S2179.6 (3)C51—C46—C47—C480.9 (6)
O9—C8—C9—S23.6 (4)S7—C46—C47—C48178.2 (3)
C8—C9—C10—C110.1 (5)C46—C47—C48—C490.3 (6)
S2—C9—C10—C11179.2 (3)C47—C48—C49—C501.0 (6)
C9—C10—C11—C120.8 (5)C47—C48—C49—C52179.0 (4)
C9—C10—C11—Br1176.6 (3)C48—C49—C50—C510.6 (6)
C10—C11—C12—C130.3 (5)C52—C49—C50—C51179.4 (4)
Br1—C11—C12—C13176.0 (3)C49—C50—C51—C460.5 (6)
C11—C12—C13—C81.0 (5)C47—C46—C51—C501.3 (6)
C11—C12—C13—S8178.2 (3)S7—C46—C51—C50177.8 (3)
C9—C8—C13—C121.7 (5)C9—C8—O9—S199.3 (3)
O9—C8—C13—C12177.6 (3)C13—C8—O9—S184.7 (4)
C9—C8—C13—S8177.4 (3)C31—C32—O10—S599.5 (3)
O9—C8—C13—S81.5 (4)C27—C32—O10—S583.7 (3)
C19—C14—C15—C162.7 (6)C22—C21—O11—S397.4 (3)
C14—C15—C16—C172.6 (6)C26—C21—O11—S387.3 (3)
C14—C15—C16—C20177.3 (4)C40—C45—O12—S7100.4 (3)
C15—C16—C17—C181.1 (6)C44—C45—O12—S782.5 (4)
C20—C16—C17—C18178.8 (4)C8—O9—S1—O119.2 (3)
C16—C17—C18—C190.3 (6)C8—O9—S1—O2111.8 (3)
C15—C14—C19—C181.2 (5)C8—O9—S1—C6136.2 (3)
C15—C14—C19—S3177.2 (3)C5—C6—S1—O119.2 (4)
C17—C18—C19—C140.3 (6)C1—C6—S1—O1161.5 (3)
C17—C18—C19—S3178.7 (3)C5—C6—S1—O2153.7 (3)
C26—C21—C22—C234.1 (5)C1—C6—S1—O227.0 (4)
O11—C21—C22—C23179.3 (3)C5—C6—S1—O994.7 (3)
C26—C21—C22—S2177.9 (2)C1—C6—S1—O984.6 (3)
O11—C21—C22—S22.7 (4)C10—C9—S2—C22109.5 (3)
C21—C22—C23—C241.3 (5)C8—C9—S2—C2271.2 (3)
S2—C22—C23—C24179.4 (3)C23—C22—S2—C9109.9 (3)
C22—C23—C24—C251.5 (6)C21—C22—S2—C972.1 (3)
C22—C23—C24—Br4178.7 (3)C21—O11—S3—O518.4 (3)
C23—C24—C25—C261.6 (6)C21—O11—S3—O6112.4 (3)
Br4—C24—C25—C26178.8 (3)C21—O11—S3—C19135.2 (3)
C24—C25—C26—C211.2 (5)C14—C19—S3—O510.2 (3)
C24—C25—C26—S4179.5 (3)C18—C19—S3—O5168.2 (3)
C22—C21—C26—C254.0 (5)C14—C19—S3—O6144.2 (3)
O11—C21—C26—C25179.2 (3)C18—C19—S3—O634.2 (4)
C22—C21—C26—S4176.7 (3)C14—C19—S3—O11103.9 (3)
O11—C21—C26—S41.4 (4)C18—C19—S3—O1177.7 (3)
C32—C27—C28—C290.3 (5)C28—C27—S4—C26110.9 (3)
S4—C27—C28—C29179.4 (3)C32—C27—S4—C2669.9 (3)
C27—C28—C29—C301.5 (5)C25—C26—S4—C27111.9 (3)
C27—C28—C29—Br2178.2 (3)C21—C26—S4—C2768.8 (3)
C28—C29—C30—C310.6 (6)C32—O10—S5—O4118.6 (2)
Br2—C29—C30—C31177.3 (3)C32—O10—S5—O311.9 (3)
C29—C30—C31—C322.1 (5)C32—O10—S5—C33129.1 (2)
C29—C30—C31—S6179.8 (3)C34—C33—S5—O428.7 (4)
C30—C31—C32—C273.8 (5)C38—C33—S5—O4150.4 (3)
S6—C31—C32—C27178.5 (3)C34—C33—S5—O3164.0 (3)
C30—C31—C32—O10179.4 (3)C38—C33—S5—O315.1 (4)
S6—C31—C32—O101.7 (4)C34—C33—S5—O1082.5 (3)
C28—C27—C32—C313.0 (5)C38—C33—S5—O1098.4 (3)
S4—C27—C32—C31177.9 (3)C32—C31—S6—C4071.4 (3)
C28—C27—C32—O10179.7 (3)C30—C31—S6—C40110.9 (3)
S4—C27—C32—O101.2 (4)C41—C40—S6—C31110.3 (3)
C38—C33—C34—C351.6 (6)C45—C40—S6—C3171.5 (3)
S5—C33—C34—C35179.3 (3)C45—O12—S7—O713.5 (3)
C33—C34—C35—C360.5 (7)C45—O12—S7—O8117.3 (3)
C34—C35—C36—C371.1 (7)C45—O12—S7—C46129.9 (3)
C34—C35—C36—C39179.2 (4)C47—C46—S7—O7162.0 (3)
C35—C36—C37—C381.7 (7)C51—C46—S7—O717.1 (4)
C39—C36—C37—C38178.6 (4)C47—C46—S7—O827.4 (3)
C34—C33—C38—C371.0 (6)C51—C46—S7—O8151.7 (3)
S5—C33—C38—C37179.9 (3)C47—C46—S7—O1284.5 (3)
C36—C37—C38—C330.6 (6)C51—C46—S7—O1296.4 (3)
C45—C40—C41—C420.1 (5)C12—C13—S8—C44110.6 (3)
S6—C40—C41—C42178.2 (3)C8—C13—S8—C4468.6 (3)
C40—C41—C42—C432.4 (6)C43—C44—S8—C13112.0 (3)
C40—C41—C42—Br3179.7 (3)C45—C44—S8—C1366.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C14–C19, C1–C6, C51–C56 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O80.952.513.303 (5)141
C53—H53A···O5i0.992.383.175 (5)137
C53—H53B···O4ii0.992.373.249 (5)147
C17—H17···O2iii0.952.383.266 (5)155
C10—H10···Cg10.952.753.698 (1)178
C23—H23···Cg20.952.653.602 (1)176
C30—H30···Cg30.952.803.742 (1)174
C41—H41···Cg40.952.853.794 (1)172
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC52H36Br4O12S8·CH2Cl2
Mr1513.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.6945 (14), 20.793 (2), 23.190 (3)
β (°) 103.350 (2)
V3)5955.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.30 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.453, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
30976, 11092, 7807
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.06
No. of reflections11092
No. of parameters715
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.68

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C14–C19, C1–C6, C51–C56 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O80.952.513.303 (5)141.3
C53—H53A···O5i0.992.383.175 (5)137.3
C53—H53B···O4ii0.992.373.249 (5)146.9
C17—H17···O2iii0.952.383.266 (5)155.3
C10—H10···Cg10.952.7493.698 (1)177.66
C23—H23···Cg20.952.6543.602 (1)175.84
C30—H30···Cg30.952.7953.742 (1)174.05
C41—H41···Cg40.952.8513.794 (1)172.30
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 20572064) and the Shandong Province Natural Science Foundation (Y2006B30) is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBondi, A. J. (1964). Chem. Phys. 68, 441–452.  CrossRef CAS
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGuo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.  Web of Science CrossRef CAS
First citationKasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167–7170.  Web of Science CSD CrossRef CAS
First citationKumagai, H., Hasegawa, M., Miyanari, S., Sugawa, Y., Sato, Y., Hori, T., Ueda, S., Kamiyama, H. & Miyano, S. (1997). Tetrahedron Lett. 38, 3971–3972.  CrossRef CAS Web of Science
First citationLhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.
First citationLhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107–7110.
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CrossRef CAS Web of Science
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS
First citationMorohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem. 39, 1–28.  Web of Science CrossRef CAS
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.  Web of Science CrossRef CAS
First citationXu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o871-o872
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds