organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3R)-N-(4-Chloro­phen­yl)-2,3-dihydr­­oxy-N′-(5-phenyl-1,3,4-thia­diazol-2-yl)succinamide

aState Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, Jiangxi, People's Republic of China, and bNanchang University School of Pharmaceutical Science, 330006 Nanchang, Jiangxi, People's Republic of China
*Correspondence e-mail: huiminghuang@yahoo.cn

(Received 8 February 2010; accepted 2 March 2010; online 6 March 2010)

In the structure of the title compound, C18H15ClN4O4S, the dihedral angle between the two benzene rings is 1.4 (3)°. The angle between the phenyl ring and thia­diazole ring is 5.8 (4)°. The conformations of the N—H and C=O bonds are anti with respect to each other. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis, see: Marson & Melling (2005[Marson, C. M. & Melling, R. C. (2005). J. Org. Chem. 70, 9771-9779.]); Tu et al. (2008[Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663-6668.]); Shriner & Furrow (1955[Shriner, R. L. & Furrow, C. L. (1955). Org. Synth. 35, 49-50.]). For related structures, see: Watadani et al. (2005[Watadani, T., Nunomura, S., Takahashi, Y. & Fujii, I. (2005). Anal. Sci. X. 21, x131-x132.]); Li et al. (2008[Li, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClN4O4S

  • Mr = 418.85

  • Monoclinic, C 2

  • a = 41.381 (3) Å

  • b = 5.1744 (5) Å

  • c = 8.7442 (9) Å

  • β = 98.315 (1)°

  • V = 1852.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.46 × 0.40 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.855, Tmax = 0.962

  • 4632 measured reflections

  • 2697 independent reflections

  • 2319 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.04

  • 2697 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 863 Friedel pairs

  • Flack parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 1.95 2.733 (3) 159
N3—H3B⋯O3ii 0.86 2.35 3.061 (4) 140
O4—H4⋯O1iii 0.82 2.02 2.790 (3) 155
N4—H4A⋯O2iv 0.86 2.17 2.951 (4) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2]; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The present tartaric acid derivate is in continuation to our previously reported crystal structure of thiadiazole scaffold compounds (Li et al., 2008). The title compound (Fig. 1) was synthesized according to literature procedures (Marson & Melling 2005; Tu et al., 2008; Shriner & Furrow 1995) and crystallized in the monoclinic crystal system. The dihedral angle between the two benzene rings is 1.4 (3)°; the angle between the benzene ring (C7-C12) and thiadiazole ring is 5.8 (4)°. The conformations of the N—H and C=O bonds are anti with respect to each other. Bond lengths and angles are in normal ranges and comparable to those in related structures (Watadani et al., 2005). In the crystal structure, molecules are linked by intermolecular O—H···N, N—H···O and O—H···O hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

Related literature top

For the synthesic procedure, see: Marson & Melling (2005); Tu et al. (2008); Shriner & Furrow (1955). For related structures, see: Watadani et al. (2005); Li et al. (2008).

Experimental top

To a solution of 2-amino-5-phenyl-1,3,4-thiadiazole (10 mmol) in THF was added diacetyl-L-tartaric anhydride (12 mmol). After the mixture was stirred at room temperature for 16 h, N,N-dicyclohexylcarbodiimide (9 mmol) and p-chloroaniline (9 mmol) in THF were added to the mixture. The reaction mixture was stirred at room temperature overnight. After insoluble material was filtered off the filtrate was evaporated in vacuo. The residual was hydrolyzed by a solution of K2CO3 in methanol at 65°C for 2 h and recrystallized from THF to afford the target compound. Yield: 3.06 g, 81%, m.p. 221-222°C. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O). The absolute configuration is undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not considered to lead to racemisation or inversion.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the b axis with hydrogen bonds drawn as dashed lines.
(2R,3R)-N-(4-Chlorophenyl)-2,3-dihydroxy-N'-(5- phenyl-1,3,4-thiadiazol-2-yl)succinamide top
Crystal data top
C18H15ClN4O4SF(000) = 864
Mr = 418.85Dx = 1.502 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2277 reflections
a = 41.381 (3) Åθ = 2.4–27.9°
b = 5.1744 (5) ŵ = 0.35 mm1
c = 8.7442 (9) ÅT = 298 K
β = 98.315 (1)°Block, colourless
V = 1852.6 (3) Å30.46 × 0.40 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2697 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4448
Tmin = 0.855, Tmax = 0.962k = 64
4632 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.5765P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2697 reflectionsΔρmax = 0.19 e Å3
253 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 863 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C18H15ClN4O4SV = 1852.6 (3) Å3
Mr = 418.85Z = 4
Monoclinic, C2Mo Kα radiation
a = 41.381 (3) ŵ = 0.35 mm1
b = 5.1744 (5) ÅT = 298 K
c = 8.7442 (9) Å0.46 × 0.40 × 0.11 mm
β = 98.315 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2319 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.962Rint = 0.022
4632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.15 e Å3
2697 reflectionsAbsolute structure: Flack (1983), 863 Friedel pairs
253 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51651 (2)0.5674 (3)0.31490 (11)0.0776 (4)
N10.82422 (6)0.6761 (7)0.6878 (3)0.0533 (8)
N20.85606 (6)0.7102 (6)0.7553 (3)0.0510 (8)
N30.77780 (5)0.4311 (5)0.7013 (3)0.0438 (7)
H3B0.76860.51120.62030.053*
N40.64966 (5)0.5279 (6)0.6689 (3)0.0412 (6)
H4A0.65890.67490.69060.049*
O10.76958 (5)0.1304 (5)0.8778 (3)0.0567 (7)
O20.65669 (5)0.0938 (5)0.7001 (3)0.0587 (6)
O30.72236 (4)0.3604 (6)0.5396 (2)0.0508 (6)
H30.70520.32060.48600.076*
O40.70977 (5)0.6252 (4)0.8040 (2)0.0485 (6)
H40.71200.66450.89580.073*
S10.833503 (16)0.34609 (19)0.90607 (8)0.0471 (2)
C10.75941 (7)0.2576 (6)0.7638 (3)0.0394 (8)
C20.72451 (6)0.2352 (7)0.6839 (3)0.0404 (8)
H20.71870.05240.66810.048*
C30.70219 (6)0.3600 (7)0.7875 (3)0.0378 (6)
H3A0.70590.27760.88940.045*
C40.66679 (6)0.3166 (7)0.7157 (3)0.0386 (7)
C50.80992 (7)0.4943 (7)0.7539 (3)0.0412 (8)
C60.86447 (6)0.5530 (7)0.8697 (3)0.0374 (7)
C70.89748 (6)0.5497 (7)0.9587 (3)0.0363 (7)
C80.92006 (7)0.7319 (7)0.9290 (4)0.0510 (9)
H80.91420.85950.85530.061*
C90.95150 (8)0.7257 (8)1.0084 (4)0.0590 (10)
H90.96670.84780.98690.071*
C100.96029 (7)0.5415 (8)1.1180 (4)0.0557 (9)
H100.98140.53911.17160.067*
C110.93800 (7)0.3592 (9)1.1492 (4)0.0558 (9)
H110.94410.23351.22380.067*
C120.90653 (7)0.3624 (8)1.0698 (3)0.0469 (8)
H120.89150.23891.09110.056*
C130.61733 (6)0.5301 (7)0.5857 (3)0.0373 (7)
C140.60929 (7)0.7228 (7)0.4779 (3)0.0464 (8)
H140.62500.84370.46020.056*
C150.57817 (8)0.7379 (7)0.3959 (4)0.0505 (9)
H150.57270.87040.32510.061*
C160.55547 (7)0.5544 (7)0.4205 (3)0.0465 (8)
C170.56310 (6)0.3612 (8)0.5266 (4)0.0505 (8)
H170.54750.23880.54280.061*
C180.59436 (6)0.3490 (8)0.6101 (3)0.0455 (7)
H180.59970.21830.68240.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0454 (5)0.1052 (10)0.0745 (6)0.0098 (6)0.0174 (4)0.0027 (6)
N10.0330 (13)0.072 (2)0.0507 (15)0.0065 (14)0.0070 (11)0.0187 (15)
N20.0342 (13)0.067 (2)0.0487 (15)0.0096 (14)0.0045 (11)0.0138 (15)
N30.0319 (12)0.057 (2)0.0389 (13)0.0026 (12)0.0077 (10)0.0075 (12)
N40.0353 (12)0.0280 (14)0.0570 (14)0.0032 (12)0.0039 (10)0.0028 (13)
O10.0445 (11)0.0624 (18)0.0572 (13)0.0051 (12)0.0125 (10)0.0186 (13)
O20.0386 (11)0.0314 (14)0.1006 (18)0.0036 (11)0.0086 (11)0.0009 (13)
O30.0376 (10)0.0773 (17)0.0334 (10)0.0068 (13)0.0091 (8)0.0006 (12)
O40.0474 (12)0.0397 (14)0.0545 (12)0.0058 (11)0.0056 (9)0.0140 (10)
S10.0327 (3)0.0557 (6)0.0486 (4)0.0064 (4)0.0085 (3)0.0129 (4)
C10.0365 (15)0.043 (2)0.0369 (15)0.0019 (14)0.0022 (13)0.0028 (14)
C20.0332 (15)0.042 (2)0.0422 (16)0.0023 (14)0.0063 (12)0.0065 (15)
C30.0371 (14)0.0351 (17)0.0385 (14)0.0033 (16)0.0036 (11)0.0013 (16)
C40.0350 (14)0.0327 (19)0.0469 (15)0.0010 (15)0.0023 (12)0.0036 (15)
C50.0333 (14)0.053 (2)0.0356 (14)0.0019 (15)0.0020 (12)0.0008 (15)
C60.0333 (14)0.043 (2)0.0347 (14)0.0013 (15)0.0020 (11)0.0008 (15)
C70.0284 (13)0.042 (2)0.0374 (14)0.0007 (14)0.0016 (11)0.0050 (15)
C80.0420 (17)0.055 (2)0.0530 (19)0.0029 (17)0.0049 (14)0.0103 (17)
C90.0375 (17)0.066 (3)0.071 (2)0.0122 (17)0.0017 (16)0.007 (2)
C100.0316 (15)0.062 (3)0.068 (2)0.0018 (18)0.0092 (14)0.000 (2)
C110.0433 (16)0.061 (2)0.0585 (19)0.007 (2)0.0093 (14)0.012 (2)
C120.0386 (14)0.048 (2)0.0519 (17)0.0052 (18)0.0012 (13)0.0067 (19)
C130.0312 (13)0.0354 (18)0.0439 (15)0.0022 (14)0.0011 (11)0.0047 (15)
C140.0459 (17)0.040 (2)0.0516 (18)0.0033 (15)0.0001 (14)0.0037 (16)
C150.0555 (19)0.046 (2)0.0463 (17)0.0077 (17)0.0040 (15)0.0056 (16)
C160.0377 (15)0.053 (2)0.0461 (16)0.0080 (18)0.0027 (13)0.0106 (17)
C170.0324 (14)0.047 (2)0.071 (2)0.0044 (18)0.0031 (14)0.001 (2)
C180.0354 (14)0.0396 (19)0.0599 (18)0.0019 (17)0.0014 (13)0.0069 (19)
Geometric parameters (Å, º) top
Cl1—C161.739 (3)C6—C71.471 (3)
N1—C51.292 (4)C7—C81.379 (4)
N1—N21.375 (3)C7—C121.385 (5)
N2—C61.297 (4)C8—C91.384 (4)
N3—C11.343 (4)C8—H80.9300
N3—C51.381 (3)C9—C101.363 (5)
N3—H3B0.8600C9—H90.9300
N4—C41.335 (4)C10—C111.374 (5)
N4—C131.427 (3)C10—H100.9300
N4—H4A0.8600C11—C121.384 (4)
O1—C11.218 (3)C11—H110.9300
O2—C41.227 (4)C12—H120.9300
O3—C21.410 (4)C13—C181.373 (4)
O3—H30.8200C13—C141.380 (5)
O4—C31.411 (4)C14—C151.383 (4)
O4—H40.8200C14—H140.9300
S1—C51.713 (3)C15—C161.374 (5)
S1—C61.734 (3)C15—H150.9300
C1—C21.515 (4)C16—C171.369 (5)
C2—C31.528 (4)C17—C181.392 (4)
C2—H20.9800C17—H170.9300
C3—C41.525 (3)C18—H180.9300
C3—H3A0.9800
C5—N1—N2112.0 (2)C8—C7—C6119.7 (3)
C6—N2—N1112.6 (3)C12—C7—C6121.0 (3)
C1—N3—C5126.7 (2)C7—C8—C9120.2 (3)
C1—N3—H3B116.7C7—C8—H8119.9
C5—N3—H3B116.7C9—C8—H8119.9
C4—N4—C13125.5 (3)C10—C9—C8120.3 (3)
C4—N4—H4A117.3C10—C9—H9119.8
C13—N4—H4A117.3C8—C9—H9119.8
C2—O3—H3109.5C9—C10—C11120.1 (3)
C3—O4—H4109.5C9—C10—H10120.0
C5—S1—C686.24 (14)C11—C10—H10120.0
O1—C1—N3123.0 (3)C10—C11—C12120.1 (3)
O1—C1—C2122.0 (3)C10—C11—H11119.9
N3—C1—C2115.0 (2)C12—C11—H11119.9
O3—C2—C1108.1 (2)C11—C12—C7120.0 (3)
O3—C2—C3111.8 (3)C11—C12—H12120.0
C1—C2—C3108.2 (2)C7—C12—H12120.0
O3—C2—H2109.6C18—C13—C14119.7 (3)
C1—C2—H2109.6C18—C13—N4122.3 (3)
C3—C2—H2109.6C14—C13—N4118.0 (3)
O4—C3—C4111.8 (3)C13—C14—C15120.6 (3)
O4—C3—C2109.1 (2)C13—C14—H14119.7
C4—C3—C2108.7 (2)C15—C14—H14119.7
O4—C3—H3A109.0C16—C15—C14119.1 (3)
C4—C3—H3A109.0C16—C15—H15120.4
C2—C3—H3A109.0C14—C15—H15120.4
O2—C4—N4125.3 (3)C17—C16—C15121.0 (3)
O2—C4—C3118.4 (3)C17—C16—Cl1119.6 (3)
N4—C4—C3116.2 (3)C15—C16—Cl1119.5 (3)
N1—C5—N3120.3 (3)C16—C17—C18119.6 (3)
N1—C5—S1115.3 (2)C16—C17—H17120.2
N3—C5—S1124.4 (3)C18—C17—H17120.2
N2—C6—C7122.7 (3)C13—C18—C17120.0 (3)
N2—C6—S1113.92 (19)C13—C18—H18120.0
C7—C6—S1123.4 (2)C17—C18—H18120.0
C8—C7—C12119.3 (2)
C5—N1—N2—C60.1 (4)C5—S1—C6—C7179.0 (3)
C5—N3—C1—O10.5 (5)N2—C6—C7—C85.0 (5)
C5—N3—C1—C2178.1 (3)S1—C6—C7—C8175.8 (2)
O1—C1—C2—O3167.3 (3)N2—C6—C7—C12173.5 (3)
N3—C1—C2—O314.1 (4)S1—C6—C7—C125.8 (4)
O1—C1—C2—C371.5 (4)C12—C7—C8—C90.6 (5)
N3—C1—C2—C3107.1 (3)C6—C7—C8—C9177.9 (3)
O3—C2—C3—O455.8 (3)C7—C8—C9—C100.8 (6)
C1—C2—C3—O463.0 (3)C8—C9—C10—C110.6 (6)
O3—C2—C3—C466.4 (3)C9—C10—C11—C120.2 (6)
C1—C2—C3—C4174.8 (3)C10—C11—C12—C70.0 (6)
C13—N4—C4—O23.5 (5)C8—C7—C12—C110.2 (5)
C13—N4—C4—C3173.6 (2)C6—C7—C12—C11178.3 (3)
O4—C3—C4—O2177.4 (3)C4—N4—C13—C1834.5 (4)
C2—C3—C4—O262.1 (4)C4—N4—C13—C14145.7 (3)
O4—C3—C4—N45.3 (3)C18—C13—C14—C151.1 (5)
C2—C3—C4—N4115.3 (3)N4—C13—C14—C15178.7 (3)
N2—N1—C5—N3179.7 (3)C13—C14—C15—C161.5 (5)
N2—N1—C5—S10.4 (4)C14—C15—C16—C171.2 (5)
C1—N3—C5—N1176.0 (3)C14—C15—C16—Cl1178.6 (2)
C1—N3—C5—S13.9 (5)C15—C16—C17—C180.5 (5)
C6—S1—C5—N10.4 (3)Cl1—C16—C17—C18179.4 (3)
C6—S1—C5—N3179.6 (3)C14—C13—C18—C170.2 (5)
N1—N2—C6—C7179.1 (3)N4—C13—C18—C17179.5 (3)
N1—N2—C6—S10.2 (4)C16—C17—C18—C130.1 (5)
C5—S1—C6—N20.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.952.733 (3)159
N3—H3B···O3ii0.862.353.061 (4)140
O4—H4···O1iii0.822.022.790 (3)155
N4—H4A···O2iv0.862.172.951 (4)151
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H15ClN4O4S
Mr418.85
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)41.381 (3), 5.1744 (5), 8.7442 (9)
β (°) 98.315 (1)
V3)1852.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.46 × 0.40 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.855, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
4632, 2697, 2319
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.04
No. of reflections2697
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15
Absolute structureFlack (1983), 863 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.821.952.733 (3)159
N3—H3B···O3ii0.862.353.061 (4)140
O4—H4···O1iii0.822.022.790 (3)155
N4—H4A···O2iv0.862.172.951 (4)151
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+2; (iv) x, y+1, z.
 

Acknowledgements

The work was supported by the Science and Technology Research Project of Jiangxi Provincial Educational Department (grant No. GJJ09076), the Natural Science Foundation of Jiangxi Province, China (grant No. 0620074) and the Scientific Research Fund of Nanchang University.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, S.-H., Huang, H.-M., Kuang, B.-H., Tu, G.-G. & Liu, C.-M. (2008). Acta Cryst. E64, o2006.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMarson, C. M. & Melling, R. C. (2005). J. Org. Chem. 70, 9771–9779.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L. & Furrow, C. L. (1955). Org. Synth. 35, 49–50.  CAS Google Scholar
First citationTu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 6663–6668.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatadani, T., Nunomura, S., Takahashi, Y. & Fujii, I. (2005). Anal. Sci. X. 21, x131–x132.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds