supplementary materials


lh5018 scheme

Acta Cryst. (2010). E66, o977-o978    [ doi:10.1107/S1600536810010986 ]

N'-(3-Methoxybenzylidene)-4-nitrobenzohydrazide monohydrate

T. Ahmad, M. Zia-ur-Rehman, H. L. Siddiqui, M. Fasih Ullah and M. Parvez

Abstract top

There are two independent formula units in the asymmetric unit of the title compound, C15H13N3O4·H2O. The C=C-N-C torsion angle of the methylidenehydrazide group is 174.3 (2)° in one molecule and 178.6 (2)° in the other. The dihedral angles between the two benzene rings in the two molecules are 4.17 (12) and 3.58 (12)°. In the crystal structure, intermolecular O-H...O, N-H...O and O-H...N hydrogen bonds link the components into a two-dimensional network and additional stabilization is provided by weak intermolecular C-H...O hydrogen bonds.

Comment top

Benzohydrazides and their derivatives are reported to show a wide variety of biological activities. For example, some of these are found useful for the treatment of autoimmune and inflammatory diseases, tumors, osteoarthritis and hemorrhage (Jiang et al., 1990) whereas some others exhibit antibacterial and anti-oxidant (Zia-ur-Rehman et al., 2009), anti-viral (Ochiai & Ishida, 1982), anti-tuberculous (Guersoy et al., 1995) and insecticidal activities (Farghaly & Moharram, 1999). As part of our on-going research on the synthesis of various heterocyclic compounds (Zia-ur-Rehman et al., 2005; 2006; 2009), we herein report the crystal structure of the title compound.

The structure of the title compound is composed of two independent molecules and two molecules of water of hydration (Fig. 1) in an asymmetric unit. The bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Raj et al., 2008; Fun et al., 2008; Wang et al., 2008; Qiu et al., 2009). The methylidenehydrazide fragment C22/C23/N5/N6/O7 is essentially planar with the maximum deviation of N6 being 0.0194 (18) Å compared to the corresponding fragment in the other molecule (C7/C8/N2/N3/O3) wherein C8 and N3 deviate by 0.0411 (14) and 0.0501 (18) Å in opposite directions from the mean-planes formed by these atoms. The mean-planes of the phenyl rings C1–C6 and C9–C14 make dihedral angles of 8.83 (14) and 12.24 (12)°, respectively, with the mean-plane of the methylidenehydrazide fragment; the corresponding dihedral angles in the other molecule are 3.23 (14) and 0.90 (14)°, respectively. The CC—N—C torsion angle of the methylidenehydrazide group is 174.3 (2)° in one molecule and 178.6 (2)° in the other. The dihedral angle between the two benzene rings in each molecule are 4.17 (12) and 3.58 (12)°. In the crystal structure, intermolecular O—H..O, N—H..O and O—H···N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; geometric details are provided in Table 1.

Related literature top

For the synthesis of related compounds, see: Zia-ur-Rehman et al. (2005, 2006). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Jiang et al. (1990); Ochiai & Ishida (1982); Guersoy et al. (1995); Farghaly & Moharram (1999). For related structures, see: Raj et al. (2008); Fun et al. (2008); Wang et al. (2008); Qiu et al. (2009).

Experimental top

A mixture of p-nitrobenzohydrazide (0.1 g; 0.552 moles), 4-methoxybenzaldehyde (0.33 ml; 0.552 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was heated to reflux for 4 hours followed by removal of the solvent under vacuum. The contents were allowed to cool and washed with a mixture of cold methanol-water (9:1) to yield the title compound. Crystals suitable for X-ray crystallographic studies were grown from a mixture of methanol-water (9:1) at room temperature by slow evaporation. Yield: 89%. M.p. 506 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 and 0.98 Å, for aryl and methyl H-atoms, respectively; the H-atoms of the water of hydrate molecules were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atom). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
N'-(3-Methoxybenzylidene)-4-nitrobenzohydrazide monohydrate top
Crystal data top
C15H13N3O4·H2OZ = 4
Mr = 317.30F(000) = 664
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Melting point: 506 K
a = 6.7162 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4929 (3) ÅCell parameters from 5661 reflections
c = 32.1141 (15) Åθ = 1.0–27.5°
α = 91.883 (2)°µ = 0.11 mm1
β = 91.5697 (12)°T = 173 K
γ = 112.753 (2)°Needle, yellow
V = 1488.12 (11) Å30.10 × 0.04 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
6546 independent reflections
Radiation source: fine-focus sealed tube5035 reflections with I > 2σ(I)
graphiteRint = 0.035
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 88
Tmin = 0.989, Tmax = 0.997k = 99
10724 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: difference Fourier map
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0216P)2 + 1.6183P]
where P = (Fo2 + 2Fc2)/3
6546 reflections(Δ/σ)max < 0.001
429 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13N3O4·H2Oγ = 112.753 (2)°
Mr = 317.30V = 1488.12 (11) Å3
Triclinic, P1Z = 4
a = 6.7162 (3) ÅMo Kα radiation
b = 7.4929 (3) ŵ = 0.11 mm1
c = 32.1141 (15) ÅT = 173 K
α = 91.883 (2)°0.10 × 0.04 × 0.03 mm
β = 91.5697 (12)°
Data collection top
Nonius KappaCCD
diffractometer
6546 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5035 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.997Rint = 0.035
10724 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149Δρmax = 0.30 e Å3
S = 1.17Δρmin = 0.24 e Å3
6546 reflectionsAbsolute structure: ?
429 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5409 (5)0.3361 (4)0.52359 (7)0.0652 (7)
O20.2135 (5)0.3034 (4)0.53490 (8)0.0782 (9)
O30.8790 (3)0.8188 (3)0.71569 (6)0.0423 (5)
O40.8847 (3)1.1025 (3)0.92010 (6)0.0383 (5)
O50.2433 (3)0.6052 (3)0.96336 (6)0.0461 (5)
O60.5729 (3)0.7096 (3)0.98840 (6)0.0432 (5)
O70.8929 (3)0.4098 (3)0.80674 (6)0.0390 (5)
O80.1740 (4)0.1127 (4)0.57904 (6)0.0613 (7)
O90.0742 (3)0.5580 (3)0.72390 (7)0.0437 (5)
H9A0.016 (5)0.464 (5)0.7397 (10)0.052*
H9B0.017 (5)0.651 (5)0.7228 (10)0.052*
O100.0793 (3)0.1569 (3)0.77316 (7)0.0468 (6)
H10A0.002 (6)0.218 (5)0.7828 (11)0.056*
H10B0.005 (6)0.052 (5)0.7631 (11)0.056*
N10.4053 (5)0.3579 (4)0.54538 (8)0.0522 (7)
N20.5317 (4)0.7257 (3)0.73434 (6)0.0327 (5)
H2N0.39360.66450.72720.039*
N30.5961 (4)0.8154 (3)0.77402 (6)0.0327 (5)
N40.4328 (4)0.6279 (3)0.96079 (7)0.0334 (5)
N50.5518 (3)0.2963 (3)0.77803 (6)0.0293 (5)
H5N0.41420.27270.78110.035*
N60.6228 (3)0.2498 (3)0.74060 (6)0.0305 (5)
C10.6020 (4)0.6333 (4)0.66505 (8)0.0317 (6)
C20.3846 (5)0.5612 (4)0.65178 (8)0.0379 (6)
H20.28010.57300.66980.045*
C30.3205 (5)0.4724 (4)0.61237 (9)0.0424 (7)
H30.17290.42410.60300.051*
C40.4752 (5)0.4557 (4)0.58715 (8)0.0379 (6)
C50.6907 (5)0.5251 (4)0.59902 (9)0.0420 (7)
H50.79380.51190.58080.050*
C60.7534 (5)0.6152 (4)0.63848 (8)0.0401 (7)
H60.90170.66500.64740.048*
C70.6827 (4)0.7339 (4)0.70724 (8)0.0329 (6)
C80.4388 (4)0.8124 (4)0.79569 (8)0.0343 (6)
H80.29630.75360.78360.041*
C90.4687 (4)0.8960 (4)0.83847 (8)0.0297 (5)
C100.6675 (4)0.9670 (4)0.86004 (8)0.0291 (5)
H100.79250.96690.84690.035*
C110.6828 (4)1.0387 (3)0.90111 (8)0.0272 (5)
C120.5013 (4)1.0433 (3)0.92029 (8)0.0298 (5)
H120.51291.09400.94820.036*
C130.3032 (4)0.9734 (4)0.89832 (8)0.0333 (6)
H130.17870.97600.91120.040*
C140.2862 (4)0.8998 (4)0.85770 (8)0.0350 (6)
H140.15010.85170.84280.042*
C150.9058 (5)1.1692 (4)0.96298 (8)0.0408 (7)
H15A1.05601.20700.97320.049*
H15B0.81101.06500.97960.049*
H15C0.86491.28110.96550.049*
C160.6180 (4)0.4345 (3)0.84904 (7)0.0259 (5)
C170.7721 (4)0.5258 (4)0.88126 (8)0.0299 (5)
H170.91910.54590.87770.036*
C180.7132 (4)0.5871 (4)0.91830 (8)0.0312 (6)
H180.81750.64870.94030.037*
C190.4983 (4)0.5564 (3)0.92247 (7)0.0272 (5)
C200.3404 (4)0.4629 (4)0.89158 (8)0.0302 (5)
H200.19320.44080.89560.036*
C210.4029 (4)0.4028 (4)0.85474 (8)0.0309 (5)
H210.29730.33900.83310.037*
C220.6997 (4)0.3791 (3)0.80989 (8)0.0289 (5)
C230.4724 (4)0.1688 (4)0.71271 (8)0.0323 (6)
H230.32780.14670.71920.039*
C240.5146 (4)0.1086 (4)0.67096 (8)0.0310 (5)
C250.3371 (4)0.0256 (4)0.64343 (8)0.0366 (6)
H250.19750.01020.65210.044*
C260.3616 (5)0.0352 (4)0.60320 (8)0.0398 (7)
C270.5630 (5)0.0151 (4)0.59032 (8)0.0374 (6)
H270.58030.05690.56290.045*
C280.7408 (5)0.0676 (4)0.61821 (9)0.0388 (6)
H280.87990.08100.60960.047*
C290.7193 (4)0.1306 (4)0.65817 (8)0.0361 (6)
H290.84230.18810.67670.043*
C300.1873 (6)0.1784 (6)0.53710 (9)0.0624 (10)
H30A0.04330.22820.52320.075*
H30B0.24260.28170.53760.075*
H30C0.28510.07020.52190.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.101 (2)0.0737 (16)0.0305 (12)0.0446 (15)0.0065 (12)0.0088 (11)
O20.0780 (19)0.097 (2)0.0421 (14)0.0186 (16)0.0182 (13)0.0240 (14)
O30.0343 (10)0.0517 (12)0.0369 (11)0.0137 (9)0.0009 (8)0.0129 (9)
O40.0299 (10)0.0522 (12)0.0313 (10)0.0153 (9)0.0018 (8)0.0114 (8)
O50.0418 (12)0.0508 (12)0.0417 (12)0.0136 (10)0.0152 (9)0.0073 (9)
O60.0554 (13)0.0420 (11)0.0260 (10)0.0132 (10)0.0029 (9)0.0087 (8)
O70.0277 (10)0.0500 (12)0.0368 (11)0.0131 (9)0.0046 (8)0.0116 (9)
O80.0517 (13)0.106 (2)0.0288 (11)0.0356 (13)0.0095 (9)0.0207 (12)
O90.0313 (11)0.0545 (13)0.0409 (12)0.0114 (10)0.0061 (9)0.0046 (10)
O100.0312 (11)0.0570 (14)0.0513 (13)0.0186 (10)0.0053 (9)0.0228 (11)
N10.080 (2)0.0484 (15)0.0269 (13)0.0243 (15)0.0034 (14)0.0049 (11)
N20.0337 (12)0.0380 (12)0.0236 (11)0.0117 (10)0.0011 (9)0.0041 (9)
N30.0393 (12)0.0369 (12)0.0222 (11)0.0156 (10)0.0006 (9)0.0025 (9)
N40.0437 (13)0.0256 (11)0.0280 (11)0.0102 (10)0.0080 (10)0.0002 (9)
N50.0288 (11)0.0379 (12)0.0230 (10)0.0150 (9)0.0043 (8)0.0028 (9)
N60.0374 (12)0.0336 (11)0.0226 (10)0.0162 (10)0.0052 (9)0.0008 (9)
C10.0368 (14)0.0290 (13)0.0279 (13)0.0114 (11)0.0001 (11)0.0014 (10)
C20.0387 (15)0.0423 (15)0.0287 (14)0.0116 (12)0.0041 (11)0.0036 (11)
C30.0409 (16)0.0458 (16)0.0327 (15)0.0091 (13)0.0029 (12)0.0033 (12)
C40.0546 (18)0.0320 (14)0.0252 (13)0.0150 (13)0.0005 (12)0.0008 (11)
C50.0532 (18)0.0494 (17)0.0306 (15)0.0281 (15)0.0067 (13)0.0038 (12)
C60.0425 (16)0.0495 (17)0.0310 (14)0.0211 (14)0.0007 (12)0.0029 (12)
C70.0354 (14)0.0332 (14)0.0304 (13)0.0140 (11)0.0003 (11)0.0018 (11)
C80.0347 (14)0.0392 (15)0.0276 (13)0.0132 (12)0.0019 (11)0.0017 (11)
C90.0355 (14)0.0272 (12)0.0263 (12)0.0119 (10)0.0039 (10)0.0028 (10)
C100.0310 (13)0.0314 (13)0.0261 (13)0.0132 (10)0.0055 (10)0.0006 (10)
C110.0282 (12)0.0256 (12)0.0276 (12)0.0103 (10)0.0017 (10)0.0016 (10)
C120.0362 (14)0.0286 (12)0.0260 (12)0.0140 (11)0.0055 (10)0.0008 (10)
C130.0301 (13)0.0369 (14)0.0353 (14)0.0148 (11)0.0100 (11)0.0041 (11)
C140.0330 (14)0.0400 (15)0.0329 (14)0.0152 (12)0.0006 (11)0.0021 (11)
C150.0406 (16)0.0427 (16)0.0296 (14)0.0068 (13)0.0042 (12)0.0069 (12)
C160.0281 (12)0.0242 (12)0.0255 (12)0.0102 (10)0.0019 (10)0.0009 (9)
C170.0251 (12)0.0325 (13)0.0311 (13)0.0102 (10)0.0005 (10)0.0014 (10)
C180.0299 (13)0.0330 (13)0.0276 (13)0.0096 (11)0.0049 (10)0.0044 (10)
C190.0349 (13)0.0249 (12)0.0216 (11)0.0112 (10)0.0050 (10)0.0009 (9)
C200.0266 (12)0.0352 (13)0.0287 (13)0.0121 (11)0.0022 (10)0.0007 (10)
C210.0270 (12)0.0380 (14)0.0250 (12)0.0103 (11)0.0007 (10)0.0045 (10)
C220.0312 (13)0.0280 (12)0.0275 (13)0.0116 (10)0.0025 (10)0.0009 (10)
C230.0362 (14)0.0358 (14)0.0265 (13)0.0158 (11)0.0044 (11)0.0011 (11)
C240.0405 (14)0.0313 (13)0.0229 (12)0.0154 (11)0.0038 (10)0.0014 (10)
C250.0357 (14)0.0471 (16)0.0288 (14)0.0183 (12)0.0037 (11)0.0018 (12)
C260.0460 (16)0.0493 (17)0.0261 (14)0.0214 (14)0.0036 (12)0.0041 (12)
C270.0512 (17)0.0396 (15)0.0241 (13)0.0204 (13)0.0061 (12)0.0000 (11)
C280.0413 (16)0.0403 (15)0.0345 (15)0.0151 (13)0.0104 (12)0.0006 (12)
C290.0371 (15)0.0376 (14)0.0323 (14)0.0131 (12)0.0051 (11)0.0010 (11)
C300.065 (2)0.092 (3)0.0277 (16)0.030 (2)0.0091 (15)0.0170 (17)
Geometric parameters (Å, °) top
O1—N11.220 (4)C9—C141.397 (4)
O2—N11.225 (4)C10—C111.393 (3)
O3—C71.240 (3)C10—H100.9500
O4—C111.368 (3)C11—C121.393 (3)
O4—C151.433 (3)C12—C131.388 (4)
O5—N41.223 (3)C12—H120.9500
O6—N41.233 (3)C13—C141.384 (4)
O7—C221.235 (3)C13—H130.9500
O8—C261.370 (3)C14—H140.9500
O8—C301.436 (3)C15—H15A0.9800
O9—H9A0.91 (4)C15—H15B0.9800
O9—H9B0.92 (3)C15—H15C0.9800
O10—H10A0.87 (4)C16—C211.389 (3)
O10—H10B0.80 (4)C16—C171.399 (3)
N1—C41.480 (3)C16—C221.495 (3)
N2—C71.339 (3)C17—C181.383 (3)
N2—N31.397 (3)C17—H170.9500
N2—H2N0.8800C18—C191.382 (4)
N3—C81.274 (3)C18—H180.9500
N4—C191.471 (3)C19—C201.386 (3)
N5—C221.358 (3)C20—C211.385 (3)
N5—N61.388 (3)C20—H200.9500
N5—H5N0.8800C21—H210.9500
N6—C231.277 (3)C23—C241.470 (3)
C1—C61.388 (4)C23—H230.9500
C1—C21.395 (4)C24—C251.386 (4)
C1—C71.508 (3)C24—C291.395 (4)
C2—C31.387 (4)C25—C261.391 (4)
C2—H20.9500C25—H250.9500
C3—C41.375 (4)C26—C271.379 (4)
C3—H30.9500C27—C281.395 (4)
C4—C51.373 (4)C27—H270.9500
C5—C61.391 (4)C28—C291.384 (4)
C5—H50.9500C28—H280.9500
C6—H60.9500C29—H290.9500
C8—C91.467 (3)C30—H30A0.9800
C8—H80.9500C30—H30B0.9800
C9—C101.386 (4)C30—H30C0.9800
C11—O4—C15117.2 (2)C13—C14—C9120.1 (2)
C26—O8—C30117.7 (2)C13—C14—H14119.9
H9A—O9—H9B106 (3)C9—C14—H14119.9
H10A—O10—H10B112 (3)O4—C15—H15A109.5
O1—N1—O2124.0 (3)O4—C15—H15B109.5
O1—N1—C4118.4 (3)H15A—C15—H15B109.5
O2—N1—C4117.5 (3)O4—C15—H15C109.5
C7—N2—N3119.2 (2)H15A—C15—H15C109.5
C7—N2—H2N120.4H15B—C15—H15C109.5
N3—N2—H2N120.4C21—C16—C17119.3 (2)
C8—N3—N2113.4 (2)C21—C16—C22124.1 (2)
O5—N4—O6123.5 (2)C17—C16—C22116.5 (2)
O5—N4—C19118.4 (2)C18—C17—C16120.8 (2)
O6—N4—C19118.1 (2)C18—C17—H17119.6
C22—N5—N6118.4 (2)C16—C17—H17119.6
C22—N5—H5N120.8C19—C18—C17118.1 (2)
N6—N5—H5N120.8C19—C18—H18120.9
C23—N6—N5114.2 (2)C17—C18—H18120.9
C6—C1—C2119.4 (2)C18—C19—C20122.7 (2)
C6—C1—C7117.7 (2)C18—C19—N4119.2 (2)
C2—C1—C7122.9 (2)C20—C19—N4118.1 (2)
C3—C2—C1120.3 (3)C21—C20—C19118.3 (2)
C3—C2—H2119.9C21—C20—H20120.9
C1—C2—H2119.9C19—C20—H20120.9
C4—C3—C2118.5 (3)C20—C21—C16120.8 (2)
C4—C3—H3120.7C20—C21—H21119.6
C2—C3—H3120.7C16—C21—H21119.6
C5—C4—C3123.0 (3)O7—C22—N5122.0 (2)
C5—C4—N1118.7 (3)O7—C22—C16121.2 (2)
C3—C4—N1118.3 (3)N5—C22—C16116.7 (2)
C4—C5—C6118.0 (3)N6—C23—C24122.5 (2)
C4—C5—H5121.0N6—C23—H23118.8
C6—C5—H5121.0C24—C23—H23118.8
C1—C6—C5120.8 (3)C25—C24—C29119.6 (2)
C1—C6—H6119.6C25—C24—C23116.5 (2)
C5—C6—H6119.6C29—C24—C23123.9 (2)
O3—C7—N2122.9 (2)C24—C25—C26120.6 (3)
O3—C7—C1120.7 (2)C24—C25—H25119.7
N2—C7—C1116.4 (2)C26—C25—H25119.7
N3—C8—C9122.7 (2)O8—C26—C27125.0 (2)
N3—C8—H8118.6O8—C26—C25114.7 (3)
C9—C8—H8118.6C27—C26—C25120.3 (3)
C10—C9—C14120.0 (2)C26—C27—C28118.9 (2)
C10—C9—C8122.6 (2)C26—C27—H27120.5
C14—C9—C8117.4 (2)C28—C27—H27120.5
C9—C10—C11119.6 (2)C29—C28—C27121.5 (3)
C9—C10—H10120.2C29—C28—H28119.3
C11—C10—H10120.2C27—C28—H28119.3
O4—C11—C12124.0 (2)C28—C29—C24119.2 (3)
O4—C11—C10115.4 (2)C28—C29—H29120.4
C12—C11—C10120.6 (2)C24—C29—H29120.4
C13—C12—C11119.4 (2)O8—C30—H30A109.5
C13—C12—H12120.3O8—C30—H30B109.5
C11—C12—H12120.3H30A—C30—H30B109.5
C14—C13—C12120.3 (2)O8—C30—H30C109.5
C14—C13—H13119.8H30A—C30—H30C109.5
C12—C13—H13119.8H30B—C30—H30C109.5
C7—N2—N3—C8174.3 (2)C8—C9—C14—C13178.8 (2)
C22—N5—N6—C23178.6 (2)C21—C16—C17—C181.0 (4)
C6—C1—C2—C30.0 (4)C22—C16—C17—C18178.3 (2)
C7—C1—C2—C3179.1 (3)C16—C17—C18—C190.2 (4)
C1—C2—C3—C40.6 (4)C17—C18—C19—C201.6 (4)
C2—C3—C4—C50.8 (5)C17—C18—C19—N4177.3 (2)
C2—C3—C4—N1179.0 (3)O5—N4—C19—C18177.6 (2)
O1—N1—C4—C52.7 (4)O6—N4—C19—C181.6 (3)
O2—N1—C4—C5177.5 (3)O5—N4—C19—C201.4 (3)
O1—N1—C4—C3177.2 (3)O6—N4—C19—C20179.4 (2)
O2—N1—C4—C32.7 (4)C18—C19—C20—C211.7 (4)
C3—C4—C5—C60.3 (5)N4—C19—C20—C21177.3 (2)
N1—C4—C5—C6179.5 (3)C19—C20—C21—C160.3 (4)
C2—C1—C6—C50.5 (4)C17—C16—C21—C201.0 (4)
C7—C1—C6—C5179.6 (3)C22—C16—C21—C20178.3 (2)
C4—C5—C6—C10.3 (4)N6—N5—C22—O71.6 (4)
N3—N2—C7—O30.3 (4)N6—N5—C22—C16177.5 (2)
N3—N2—C7—C1179.8 (2)C21—C16—C22—O7179.5 (3)
C6—C1—C7—O39.0 (4)C17—C16—C22—O71.2 (4)
C2—C1—C7—O3170.1 (3)C21—C16—C22—N51.4 (4)
C6—C1—C7—N2171.0 (3)C17—C16—C22—N5177.9 (2)
C2—C1—C7—N29.9 (4)N5—N6—C23—C24180.0 (2)
N2—N3—C8—C9179.2 (2)N6—C23—C24—C25178.9 (3)
N3—C8—C9—C106.7 (4)N6—C23—C24—C291.1 (4)
N3—C8—C9—C14174.2 (3)C29—C24—C25—C260.2 (4)
C14—C9—C10—C111.2 (4)C23—C24—C25—C26179.8 (3)
C8—C9—C10—C11177.9 (2)C30—O8—C26—C270.1 (5)
C15—O4—C11—C123.1 (4)C30—O8—C26—C25179.9 (3)
C15—O4—C11—C10177.2 (2)C24—C25—C26—O8179.3 (3)
C9—C10—C11—O4178.9 (2)C24—C25—C26—C270.6 (4)
C9—C10—C11—C121.4 (4)O8—C26—C27—C28179.6 (3)
O4—C11—C12—C13179.5 (2)C25—C26—C27—C280.3 (4)
C10—C11—C12—C130.9 (4)C26—C27—C28—C290.4 (4)
C11—C12—C13—C140.1 (4)C27—C28—C29—C240.8 (4)
C12—C13—C14—C90.2 (4)C25—C24—C29—C280.5 (4)
C10—C9—C14—C130.3 (4)C23—C24—C29—C28179.5 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O90.881.982.839 (3)166
N5—H5N···O100.882.082.930 (3)163
C2—H2···O90.952.233.153 (3)164
C8—H8···O90.952.453.277 (3)145
C15—H15B···O60.982.553.443 (4)151
C21—H21···O100.952.423.355 (3)169
C23—H23···O100.952.463.295 (3)147
O9—H9A···O7i0.91 (4)2.26 (3)3.020 (3)140 (3)
O9—H9A···N6i0.91 (4)2.34 (3)3.093 (3)140 (3)
O9—H9B···O3i0.92 (3)1.84 (4)2.758 (3)173 (3)
O10—H10A···O7i0.87 (4)1.99 (4)2.846 (3)167 (3)
O10—H10B···O3ii0.80 (4)2.17 (4)2.925 (3)158 (3)
C13—H13···O4i0.952.523.390 (3)153
C15—H15A···O6iii0.982.593.560 (4)171
C30—H30A···O2iv0.982.403.322 (4)156
C30—H30B···O1v0.982.593.200 (4)121
Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z; (iii) −x+2, −y+2, −z+2; (iv) −x, −y, −z+1; (v) −x+1, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O90.881.982.839 (3)166
N5—H5N···O100.882.082.930 (3)163
C2—H2···O90.952.233.153 (3)164
C8—H8···O90.952.453.277 (3)145
C15—H15B···O60.982.553.443 (4)151
C21—H21···O100.952.423.355 (3)169
C23—H23···O100.952.463.295 (3)147
O9—H9A···O7i0.91 (4)2.26 (3)3.020 (3)140 (3)
O9—H9A···N6i0.91 (4)2.34 (3)3.093 (3)140 (3)
O9—H9B···O3i0.92 (3)1.84 (4)2.758 (3)173 (3)
O10—H10A···O7i0.87 (4)1.99 (4)2.846 (3)167 (3)
O10—H10B···O3ii0.80 (4)2.17 (4)2.925 (3)158 (3)
C13—H13···O4i0.952.523.390 (3)153
C15—H15A···O6iii0.982.593.560 (4)171
C30—H30A···O2iv0.982.403.322 (4)156
C30—H30B···O1v0.982.593.200 (4)121
Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z; (iii) −x+2, −y+2, −z+2; (iv) −x, −y, −z+1; (v) −x+1, −y, −z+1.
Acknowledgements top

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

references
References top

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.

Farghaly, A. O. & Moharram, A. M. (1999). Boll. Chim. Farm. 138, 280–289.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o2377.

Guersoy, A. & Illhan, N. (1995). Farmaco, 50, 559–562.

Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Jiang, J. B., Hesson, D. P., Dusak, B. A., Dexter, D. L. & Kang, G. T. (1990). J. Med. Chem. 33, 1721–1728.

Ochiai, T. & Ishida, R. (1982). Jpn J. Pharmacol. 32, 427–438.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Qiu, F., He, X.-J., Sun, Y.-X. & Zhu, X. (2009). Acta Cryst. E65, o2050.

Raj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, 71, 1253–1260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.

Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.

Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.

Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.