organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Morpholinium-4-yl)ethyl­ammonium sulfate methanol monosolvate

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: biyeqqhar@yahoo.com.cn

(Received 20 March 2010; accepted 23 March 2010; online 27 March 2010)

In the title compound, C6H16N2O2+·SO42−·CH3OH, the morpholinium ring of the dication adopts a chair conformation. The crystal structure is stabilized by an extensive three-dimensional network of inter­molecular O—H⋯O, N—H⋯O, O—H⋯S and N—H⋯S hydrogen bonds.

Related literature

For supra­molecular compounds derived from the self-assembly of inorganic acids with organic amines, see: Xu (2010[Xu, R. (2010). Acta Cryst. E66, o835.]); Akhtar et al. (2010[Akhtar, T., Masih, K., Tahir, M. N., Tariq, M. I. & Iqbal, S. (2010). Acta Cryst. E66, o819.]); Zhang & Liu (2010[Zhang, Y. & Liu, X. (2010). Acta Cryst. E66, o790.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783-o784.]); SiMa (2010[SiMa, W. (2010). Acta Cryst. E66, o895.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N2O2+·SO42−·CH4O

  • Mr = 260.31

  • Monoclinic, P 21 /c

  • a = 15.593 (14) Å

  • b = 8.573 (8) Å

  • c = 9.483 (9) Å

  • β = 106.395 (11)°

  • V = 1216.0 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.951

  • 5674 measured reflections

  • 2462 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.286

  • S = 1.08

  • 2462 reflections

  • 151 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.85 2.659 (6) 172
O5—H5⋯S1i 0.82 2.92 3.636 (6) 147
N2—H2A⋯O1ii 0.89 2.07 2.914 (5) 158
N2—H2A⋯O3ii 0.89 2.30 3.001 (5) 135
N2—H2A⋯S1ii 0.89 2.68 3.553 (4) 167
N2—H2B⋯O2iii 0.89 2.02 2.898 (5) 168
N2—H2B⋯O3iii 0.89 2.45 3.081 (5) 128
N2—H2B⋯S1iii 0.89 2.72 3.567 (4) 160
N2—H2C⋯O2 0.89 2.18 2.997 (5) 153
N2—H2C⋯O1 0.89 2.23 2.930 (4) 135
N2—H2C⋯S1 0.89 2.71 3.565 (4) 162
N1—H1⋯O2iv 0.90 (1) 2.01 (3) 2.837 (5) 152 (5)
N1—H1⋯O4iv 0.90 (1) 2.60 (3) 3.382 (6) 146 (5)
N1—H1⋯S1iv 0.90 (1) 2.85 (1) 3.738 (4) 172 (5)
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly of inorganic acids with organic amines readily gives rise to hydrogen-bonded supramolecular compounds (Xu, 2010; Akhtar et al., 2010; Zhang & Liu, 2010; Hemamalini & Fun, 2010; SiMa, 2010). In order to construct a similar supramolecular compound, the title compound was prepared from the reaction of 2-morpholin-4-ylethylamine with sulfuric acid in a methanol solution and its structure is reported here.

The title compound consists of a 2-morpholin-4-ylethylammonium dication, a sulfate dianion, and a methanol molecule (Fig. 1). The crystal structure is stabilized by intermolecular O–H···O, N–H···O, O–H···S, and N–H···S hydrogen bonds (Table 1, Fig. 2).

Related literature top

For supramolecular compounds derived from the self-assembly of inorganic acids with organic amines, see: Xu (2010); Akhtar et al. (2010); Zhang & Liu (2010); Hemamalini & Fun (2010); SiMa (2010).

Experimental top

Equimolar quantities (1.0 mmol each) of 2-morpholin-4-ylethylamine and sulfuric acid were mixed in a methanol solution. The mixture was stirred at room temperature for half an hour to give a colorless solution. After keeping the solution in air for a few days, colorless block-shaped crystals were formed.

Refinement top

H1 attached to N1 was located from a difference map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances of 0.96-0.97 Å, N–H distances of 0.89 Å, O–H distance of 0.82 Å, and with Uiso(H) set to 1.2Ueq(C,N) and 1.5Ueq(O5 and C7). Crystals were small and very weakly diffracting and this is reflected in the low fraction of measured reflections and the relatively poor residuals.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-(Morpholinium-4-yl)ethylammonium sulfate methanol monosolvate top
Crystal data top
C6H16N2O2+·SO42·CH4OF(000) = 560
Mr = 260.31Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2104 reflections
a = 15.593 (14) Åθ = 2.2–27.7°
b = 8.573 (8) ŵ = 0.28 mm1
c = 9.483 (9) ÅT = 298 K
β = 106.395 (11)°Block, colorless
V = 1216.0 (19) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2462 independent reflections
Radiation source: fine-focus sealed tube1726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1914
Tmin = 0.946, Tmax = 0.951k = 1010
5674 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.286H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1965P)2]
where P = (Fo2 + 2Fc2)/3
2462 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.62 e Å3
1 restraintΔρmin = 0.87 e Å3
Crystal data top
C6H16N2O2+·SO42·CH4OV = 1216.0 (19) Å3
Mr = 260.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.593 (14) ŵ = 0.28 mm1
b = 8.573 (8) ÅT = 298 K
c = 9.483 (9) Å0.20 × 0.18 × 0.18 mm
β = 106.395 (11)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2462 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1726 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.951Rint = 0.049
5674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0871 restraint
wR(F2) = 0.286H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.62 e Å3
2462 reflectionsΔρmin = 0.87 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35803 (6)0.59946 (11)0.06772 (9)0.0369 (4)
O10.3987 (2)0.5157 (3)0.2047 (3)0.0523 (8)
O20.3969 (2)0.7579 (3)0.0786 (3)0.0557 (8)
O30.3768 (2)0.5166 (4)0.0531 (3)0.0574 (9)
O40.2617 (2)0.6167 (5)0.0429 (5)0.0772 (11)
O50.1552 (3)0.3688 (5)1.0088 (7)0.1071 (18)
H50.18340.45071.01820.161*
O60.9107 (2)0.4451 (4)0.5902 (3)0.0606 (9)
N10.7246 (2)0.5104 (4)0.4511 (3)0.0371 (7)
N20.51382 (19)0.7510 (4)0.3894 (3)0.0403 (8)
H2A0.54020.84200.38410.061*
H2B0.47540.76210.44260.061*
H2C0.48460.71920.29930.061*
C10.7681 (3)0.5356 (5)0.6131 (4)0.0469 (10)
H1A0.72470.51830.66730.056*
H1B0.78930.64220.63000.056*
C20.8462 (3)0.4232 (7)0.6667 (5)0.0593 (12)
H2D0.87360.43920.77090.071*
H2E0.82420.31680.65280.071*
C30.8723 (3)0.4061 (6)0.4418 (5)0.0558 (12)
H3A0.85130.29910.43510.067*
H3B0.91740.41350.38950.067*
C40.7949 (3)0.5129 (5)0.3698 (4)0.0471 (10)
H4A0.81680.61860.36820.056*
H4B0.76840.48010.26900.056*
C50.6558 (2)0.6314 (5)0.3848 (4)0.0394 (8)
H5A0.63040.60940.28100.047*
H5B0.68410.73300.39380.047*
C60.5817 (3)0.6351 (5)0.4589 (5)0.0497 (10)
H6A0.55420.53280.45240.060*
H6B0.60650.66040.56210.060*
C70.0750 (4)0.3876 (9)0.9066 (8)0.0911 (19)
H7A0.02950.33510.93860.137*
H7B0.07780.34440.81460.137*
H7C0.06110.49680.89440.137*
H10.702 (4)0.413 (3)0.437 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (6)0.0445 (6)0.0335 (6)0.0004 (3)0.0079 (4)0.0002 (3)
O10.0618 (19)0.0560 (18)0.0355 (14)0.0019 (14)0.0078 (13)0.0054 (11)
O20.068 (2)0.0439 (17)0.0592 (18)0.0076 (14)0.0246 (14)0.0018 (12)
O30.071 (2)0.065 (2)0.0364 (14)0.0049 (15)0.0159 (13)0.0076 (12)
O40.0357 (18)0.089 (3)0.107 (3)0.0122 (15)0.0190 (18)0.005 (2)
O50.070 (3)0.081 (3)0.143 (4)0.002 (2)0.016 (3)0.016 (3)
O60.0330 (15)0.092 (2)0.0519 (17)0.0065 (15)0.0046 (12)0.0012 (16)
N10.0305 (15)0.0446 (17)0.0346 (15)0.0036 (12)0.0068 (11)0.0012 (12)
N20.0317 (16)0.0509 (19)0.0376 (15)0.0020 (12)0.0085 (12)0.0046 (13)
C10.039 (2)0.067 (3)0.0326 (18)0.0013 (18)0.0064 (14)0.0002 (16)
C20.043 (2)0.089 (3)0.039 (2)0.009 (2)0.0008 (17)0.011 (2)
C30.036 (2)0.081 (3)0.050 (2)0.0041 (19)0.0122 (17)0.0046 (19)
C40.036 (2)0.068 (3)0.0380 (18)0.0050 (18)0.0119 (15)0.0039 (16)
C50.0333 (18)0.055 (2)0.0287 (16)0.0000 (15)0.0072 (13)0.0001 (14)
C60.050 (2)0.059 (2)0.047 (2)0.0108 (19)0.0257 (17)0.0136 (18)
C70.049 (3)0.108 (5)0.109 (5)0.005 (3)0.011 (3)0.000 (4)
Geometric parameters (Å, º) top
S1—O31.446 (3)C1—H1A0.9700
S1—O41.461 (4)C1—H1B0.9700
S1—O11.463 (3)C2—H2D0.9700
S1—O21.479 (3)C2—H2E0.9700
O5—C71.358 (7)C3—C41.516 (6)
O5—H50.8200C3—H3A0.9700
O6—C31.405 (5)C3—H3B0.9700
O6—C21.409 (6)C4—H4A0.9700
N1—C51.497 (5)C4—H4B0.9700
N1—C41.508 (5)C5—C61.512 (5)
N1—C11.509 (5)C5—H5A0.9700
N1—H10.899 (10)C5—H5B0.9700
N2—C61.466 (5)C6—H6A0.9700
N2—H2A0.8900C6—H6B0.9700
N2—H2B0.8900C7—H7A0.9600
N2—H2C0.8900C7—H7B0.9600
C1—C21.524 (6)C7—H7C0.9600
O3—S1—O4110.5 (2)H2D—C2—H2E108.0
O3—S1—O1109.1 (2)O6—C3—C4111.5 (4)
O4—S1—O1111.2 (2)O6—C3—H3A109.3
O3—S1—O2109.6 (2)C4—C3—H3A109.3
O4—S1—O2107.5 (2)O6—C3—H3B109.3
O1—S1—O2108.85 (17)C4—C3—H3B109.3
C7—O5—H5109.5H3A—C3—H3B108.0
C3—O6—C2108.6 (3)N1—C4—C3111.3 (3)
C5—N1—C4108.3 (3)N1—C4—H4A109.4
C5—N1—C1113.0 (3)C3—C4—H4A109.4
C4—N1—C1109.6 (3)N1—C4—H4B109.4
C5—N1—H1112 (4)C3—C4—H4B109.4
C4—N1—H1104 (4)H4A—C4—H4B108.0
C1—N1—H1109 (4)N1—C5—C6111.7 (3)
C6—N2—H2A109.5N1—C5—H5A109.3
C6—N2—H2B109.5C6—C5—H5A109.3
H2A—N2—H2B109.5N1—C5—H5B109.3
C6—N2—H2C109.5C6—C5—H5B109.3
H2A—N2—H2C109.5H5A—C5—H5B107.9
H2B—N2—H2C109.5N2—C6—C5110.8 (3)
N1—C1—C2109.6 (3)N2—C6—H6A109.5
N1—C1—H1A109.7C5—C6—H6A109.5
C2—C1—H1A109.7N2—C6—H6B109.5
N1—C1—H1B109.7C5—C6—H6B109.5
C2—C1—H1B109.7H6A—C6—H6B108.1
H1A—C1—H1B108.2O5—C7—H7A109.5
O6—C2—C1111.3 (4)O5—C7—H7B109.5
O6—C2—H2D109.4H7A—C7—H7B109.5
C1—C2—H2D109.4O5—C7—H7C109.5
O6—C2—H2E109.4H7A—C7—H7C109.5
C1—C2—H2E109.4H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.821.852.659 (6)172
O5—H5···S1i0.822.923.636 (6)147
N2—H2A···O1ii0.892.072.914 (5)158
N2—H2A···O3ii0.892.303.001 (5)135
N2—H2A···S1ii0.892.683.553 (4)167
N2—H2B···O2iii0.892.022.898 (5)168
N2—H2B···O3iii0.892.453.081 (5)128
N2—H2B···S1iii0.892.723.567 (4)160
N2—H2C···O20.892.182.997 (5)153
N2—H2C···O10.892.232.930 (4)135
N2—H2C···S10.892.713.565 (4)162
N1—H1···O2iv0.90 (1)2.01 (3)2.837 (5)152 (5)
N1—H1···O4iv0.90 (1)2.60 (3)3.382 (6)146 (5)
N1—H1···S1iv0.90 (1)2.85 (1)3.738 (4)172 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16N2O2+·SO42·CH4O
Mr260.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.593 (14), 8.573 (8), 9.483 (9)
β (°) 106.395 (11)
V3)1216.0 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
5674, 2462, 1726
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.286, 1.08
No. of reflections2462
No. of parameters151
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.87

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4i0.821.852.659 (6)171.5
O5—H5···S1i0.822.923.636 (6)146.9
N2—H2A···O1ii0.892.072.914 (5)157.9
N2—H2A···O3ii0.892.303.001 (5)135.1
N2—H2A···S1ii0.892.683.553 (4)166.6
N2—H2B···O2iii0.892.022.898 (5)168.0
N2—H2B···O3iii0.892.453.081 (5)128.2
N2—H2B···S1iii0.892.723.567 (4)159.6
N2—H2C···O20.892.182.997 (5)152.7
N2—H2C···O10.892.232.930 (4)135.4
N2—H2C···S10.892.713.565 (4)162.4
N1—H1···O2iv0.899 (10)2.01 (3)2.837 (5)152 (5)
N1—H1···O4iv0.899 (10)2.60 (3)3.382 (6)146 (5)
N1—H1···S1iv0.899 (10)2.845 (13)3.738 (4)172 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

References

First citationAkhtar, T., Masih, K., Tahir, M. N., Tariq, M. I. & Iqbal, S. (2010). Acta Cryst. E66, o819.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783–o784.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiMa, W. (2010). Acta Cryst. E66, o895.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, R. (2010). Acta Cryst. E66, o835.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, Y. & Liu, X. (2010). Acta Cryst. E66, o790.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds