supplementary materials


ci5173 scheme

Acta Cryst. (2010). E66, o2530    [ doi:10.1107/S1600536810035579 ]

{3-[(2-Chloro-1,3-thiazol-4-yl)methyl]-1,3-thiazolidin-2-ylideneamino}formonitrile

Y. Li

Abstract top

In the title compound, C8H7ClN4S2, the dihedral angle between the thiazolidine ring (r.m.s. deviation = 0.028 Å) and the thiazole ring (r.m.s. deviation = 0.004 Å) is 74.74 (6)°. The formonitrile group is almost coplanar with the attached ring [C-N-C-N torsion angle = 167 (2)°.

Comment top

Recently, compounds containing thiazole ring have been reported to possess various biological activities such as fungicidal, insecticidal, and anticancer activities (Maienfisch & Gsell, 1998; Smith et al., 2001; Kim et al., 2002; Ehrenfreund et al., 2003; Shiga et al., 2003; Tanaka et al., 2005). In addition, 1,3-thiazolidine ring is an important heterocycle scaffold among thiazole compounds. In the past few years lots of 1,3-thiazolidine derivatives have attracted intense attention in medicinal research due to their broad spectrum bioactivities (Liu et al., 2000; Yeh et al., 2002; Ueda et al., 2004;Albrecht et al., 2005). In order to discover more biologically active thiazole compounds, we synthesized thiazole compounds containing 1,3-thiazolidine ring and we report here the crystal structure of the title compound.

The molecule of the title compound (Fig.1) contains two planar rings, the substituted 1,3-thiazolidine ring (S1/C1/C2/N1/C3, r.m.s. deviation 0.028 Å) and the thiazole ring (S2/C8/N4/C6/C7, r.m.s. deviation 0.004 Å). The dihedral angle between the planes of 1,3-thiazolidine ring and thiazole ring is 74.74 (6)°.

Related literature top

For the biological activity of compounds containing a thiazole ring, see: Ehrenfreund et al. (2003); Kim et al. (2002); Maienfisch & Gsell (1998); Shiga et al. (2003); Smith & Hunter (2001); Tanaka et al. (2005). For the bioactivity of 1,3-thiazolidine derivatives, see: Albrecht et al. (2005); Liu & Li (2000); Ueda et al. (2004); Yeh & Chen (2002).

Experimental top

To a stirred solution of 2-cyanoimino-1,3-thiazolidine (1.27 g, 0.01 mol), potassium carbonate (1.66 g,0.012 mol) in 20 ml of acetonitrile was added dropwise a solution of 2-chloro-4-(chloromethyl)thiazole (1.68 g, 0.01 mol) in 15 ml of acetonitrile. The reaction mixture was heated to 333 K for 12 h and then filtered. The solvent was removed to give a solid product, which was recrystallized from ethyl acetate to afford colourless crystals.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93 and 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
{3-[(2-Chloro-1,3-thiazol-4-yl)methyl]-1,3-thiazolidin-2- ylideneamino}formonitrile top
Crystal data top
C8H7ClN4S2F(000) = 528
Mr = 258.75Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3431 reflections
a = 6.1731 (9) Åθ = 2.4–26.2°
b = 16.807 (2) ŵ = 0.70 mm1
c = 10.9057 (14) ÅT = 294 K
β = 105.846 (2)°Monoclinic, colourless
V = 1088.5 (3) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2220 independent reflections
Radiation source: fine-focus sealed tube1862 reflections with I > 2σ(I)
graphiteRint = 0.021
φ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.860, Tmax = 0.884k = 1521
6141 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.3256P]
where P = (Fo2 + 2Fc2)/3
2220 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H7ClN4S2V = 1088.5 (3) Å3
Mr = 258.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1731 (9) ŵ = 0.70 mm1
b = 16.807 (2) ÅT = 294 K
c = 10.9057 (14) Å0.22 × 0.20 × 0.18 mm
β = 105.846 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1862 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.884Rint = 0.021
6141 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.34 e Å3
2220 reflectionsAbsolute structure: ?
136 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27073 (11)0.02267 (4)0.65605 (6)0.0705 (2)
S10.70384 (10)0.09234 (4)1.21031 (5)0.0588 (2)
S20.07788 (10)0.10824 (3)0.56567 (5)0.05097 (18)
N10.4957 (3)0.15672 (9)0.99768 (14)0.0389 (4)
N20.3327 (3)0.18765 (11)1.15862 (15)0.0466 (4)
N30.3408 (4)0.18457 (14)1.38596 (19)0.0669 (6)
N40.0452 (3)0.11665 (10)0.79535 (15)0.0410 (4)
C10.8149 (4)0.07222 (18)1.0769 (2)0.0660 (7)
H1A0.97240.08731.09750.079*
H1B0.80340.01591.05710.079*
C20.6843 (4)0.11841 (17)0.9667 (2)0.0631 (7)
H2A0.78010.15830.94400.076*
H2B0.62960.08340.89420.076*
C30.4872 (3)0.15132 (11)1.11773 (17)0.0370 (4)
C40.3448 (4)0.18300 (13)1.2819 (2)0.0478 (5)
C50.3492 (3)0.20877 (12)0.90364 (17)0.0426 (4)
H5A0.43940.24990.87900.051*
H5B0.24280.23460.94170.051*
C60.2233 (3)0.16430 (11)0.78796 (17)0.0378 (4)
C70.2661 (4)0.16624 (12)0.67255 (17)0.0451 (5)
H70.38180.19510.65410.054*
C80.0433 (3)0.08538 (11)0.68491 (19)0.0428 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (4)0.0730 (4)0.0743 (4)0.0187 (3)0.0221 (3)0.0253 (3)
S10.0642 (4)0.0707 (4)0.0407 (3)0.0175 (3)0.0133 (3)0.0086 (3)
S20.0674 (4)0.0577 (3)0.0290 (3)0.0066 (3)0.0152 (2)0.0030 (2)
N10.0391 (8)0.0492 (9)0.0307 (8)0.0022 (7)0.0131 (6)0.0022 (7)
N20.0483 (9)0.0586 (10)0.0382 (9)0.0007 (8)0.0208 (7)0.0049 (7)
N30.0869 (15)0.0758 (14)0.0499 (11)0.0106 (11)0.0390 (11)0.0082 (10)
N40.0470 (9)0.0462 (9)0.0335 (8)0.0025 (7)0.0174 (7)0.0024 (7)
C10.0546 (13)0.0878 (18)0.0591 (14)0.0197 (13)0.0218 (11)0.0030 (13)
C20.0664 (15)0.0811 (17)0.0517 (13)0.0266 (13)0.0328 (12)0.0063 (12)
C30.0369 (9)0.0420 (10)0.0328 (9)0.0068 (8)0.0108 (7)0.0030 (7)
C40.0526 (12)0.0519 (12)0.0465 (12)0.0061 (9)0.0264 (9)0.0056 (9)
C50.0517 (11)0.0417 (10)0.0356 (9)0.0012 (8)0.0140 (8)0.0005 (8)
C60.0448 (10)0.0398 (10)0.0310 (9)0.0074 (8)0.0141 (7)0.0027 (7)
C70.0549 (12)0.0498 (11)0.0345 (10)0.0026 (9)0.0191 (9)0.0019 (8)
C80.0470 (10)0.0435 (10)0.0397 (10)0.0051 (8)0.0149 (8)0.0041 (8)
Geometric parameters (Å, °) top
Cl1—C81.715 (2)N4—C61.380 (2)
S1—C31.7471 (19)C1—C21.472 (3)
S1—C11.801 (2)C1—H1A0.97
S2—C71.709 (2)C1—H1B0.97
S2—C81.711 (2)C2—H2A0.97
N1—C31.328 (2)C2—H2B0.97
N1—C21.448 (3)C5—C61.490 (3)
N1—C51.459 (2)C5—H5A0.97
N2—C31.309 (2)C5—H5B0.97
N2—C41.328 (3)C6—C71.355 (3)
N3—C41.142 (3)C7—H70.93
N4—C81.291 (2)
C3—S1—C192.29 (10)N2—C3—N1122.18 (17)
C7—S2—C888.08 (10)N2—C3—S1125.57 (14)
C3—N1—C2116.74 (17)N1—C3—S1112.25 (14)
C3—N1—C5123.40 (16)N3—C4—N2173.6 (3)
C2—N1—C5119.09 (15)N1—C5—C6111.98 (15)
C3—N2—C4118.19 (18)N1—C5—H5A109.2
C8—N4—C6108.81 (16)C6—C5—H5A109.2
C2—C1—S1108.40 (16)N1—C5—H5B109.2
C2—C1—H1A110.0C6—C5—H5B109.2
S1—C1—H1A110.0H5A—C5—H5B107.9
C2—C1—H1B110.0C7—C6—N4115.37 (17)
S1—C1—H1B110.0C7—C6—C5125.85 (19)
H1A—C1—H1B108.4N4—C6—C5118.78 (16)
N1—C2—C1109.89 (18)C6—C7—S2110.57 (16)
N1—C2—H2A109.7C6—C7—H7124.7
C1—C2—H2A109.7S2—C7—H7124.7
N1—C2—H2B109.7N4—C8—S2117.15 (16)
C1—C2—H2B109.7N4—C8—Cl1122.55 (16)
H2A—C2—H2B108.2S2—C8—Cl1120.29 (12)
C3—S1—C1—C24.2 (2)C3—N1—C5—C6124.90 (19)
C3—N1—C2—C16.9 (3)C2—N1—C5—C665.5 (2)
C5—N1—C2—C1177.2 (2)C8—N4—C6—C71.2 (2)
S1—C1—C2—N16.7 (3)C8—N4—C6—C5178.42 (17)
C4—N2—C3—N1175.95 (18)N1—C5—C6—C7106.0 (2)
C4—N2—C3—S13.3 (3)N1—C5—C6—N474.4 (2)
C2—N1—C3—N2175.7 (2)N4—C6—C7—S20.9 (2)
C5—N1—C3—N25.9 (3)C5—C6—C7—S2178.68 (15)
C2—N1—C3—S13.7 (2)C8—S2—C7—C60.28 (16)
C5—N1—C3—S1173.46 (14)C6—N4—C8—S21.0 (2)
C1—S1—C3—N2179.83 (19)C6—N4—C8—Cl1179.65 (14)
C1—S1—C3—N10.49 (17)C7—S2—C8—N40.42 (17)
C3—N2—C4—N3167 (2)C7—S2—C8—Cl1179.83 (14)
references
References top

Albrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402–4407.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ehrenfreund, J., Tobler, H. & Walter, H. (2003). WO Patent No. 2003074491.

Kim, K. S., Kimball, S. D., Misra, R. N. & Ranlins, B. D. (2002). J. Med. Chem. 45, 3905–3927.

Liu, H. L. & Li, Z. C. (2000). Molecules, 5, 1055–1061.

Maienfisch, P. & Gsell, L. (1998). WO Patent No. 9806710.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312.

Smith, F. D. & Hunter, R. (2001). Eur. Patent No. 1112688.

Tanaka, A., Tamura, T. & Haramura, M. (2005). WO Patent No. 2005054216.

Ueda, S., Terauchi, H., Yano, A., Matsumoto, M., Kubo, T., Kyoya, Y., Suzuki, K., Ido, M. & Kawasaki, M. (2004). Bioorg. Med. Chem. 12, 4101–4116.

Yeh, C. L. & Chen, C. H. (2002). US Patent No. 6465492.