organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Methyl­carbamo­thio­yl)disulfan­yl]methyl N-methyl­carbamodi­thio­ate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bDepartment of Chemistry, University of Science and Technology, Mirpur AJK, Pakistan, and cLaboratoire de Cristallographie, Ecole Polytechnique Fédérale de Lausanne, Switzerland
*Correspondence e-mail: hizbmarwat@yahoo.com

(Received 19 August 2010; accepted 25 September 2010; online 30 September 2010)

The title compound, C5H10N2S5, was unintentionally obtained as the product of an attempted synthesis of a methyl­carbamodithioic acid using methyl­amine and carbon disulfide. In the mol­ecule, two dithio­carbamate groups are bridged by a –CH2S– unit. The C—S—S—C torsion angle is −90.13 (11)°. The crystal structure is stabilized by N—H⋯S inter­actions between neighbouring mol­ecules. An intra­molecular N—H⋯S hydrogen bond also occurs.

Related literature

For dithio­carbamate ligands, see: Cox et al. (1999[Cox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 486-491.]); Liu & Bao (2007[Liu, Y. Y. & Bao, W. L. (2007). Tetrahedron Lett. 48, 4785-4788.]); Nair et al. (2002[Nair, P. S., Radhakrishan, T., Revaprasadu, N., Kolawole, G. A. & O' Brien, P. (2002). J. Mater. Chem. 12, 2722-2725.]).

[Scheme 1]

Experimental

Crystal data
  • C5H10N2S5

  • Mr = 258.45

  • Triclinic, [P \overline 1]

  • a = 7.188 (1) Å

  • b = 7.884 (2) Å

  • c = 10.219 (2) Å

  • α = 101.23 (3)°

  • β = 96.85 (3)°

  • γ = 102.74 (3)°

  • V = 546.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.11 × 0.10 mm

Data collection
  • Stoe IPDS diffractometer

  • 4080 measured reflections

  • 2077 independent reflections

  • 1924 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.15

  • 2077 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S3 0.86 2.50 3.073 (2) 125
N1—H1⋯S3i 0.86 3.02 3.595 (2) 127
N2—H2⋯S1ii 0.86 2.67 3.515 (2) 168
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Sulfur-containing organic compounds like dithiocarbamates and xanthates have been used as exceleant metal complexing agents. They have applications as fungicides, pesticides, chelating agents for removal of heavy metal ions from toxic waste, precursors for metal-organic chemical vapour deposition (MOCVD) and synthesis of semi-conductor nanoparticles (Cox & Tiekink, et al., 1999; Nair et al., 2002.) Dithiocarbamates have also been used as protection groups in peptide synthesis, as linkers in solid phase organic synthesis and recently in the synthesis of ionic ligands (Liu et al., 2007.) In the title compound (Fig. 1), the disulfide portion is substatially twisted, with C–S–S–C torsion angle of -90.13 (11)°. The molecular packing also features intra- and intermolecular N—H···S interactions (Table 1).

Related literature top

For dithiocarbamate ligands, see: Cox et al. (1999); Liu & Bao (2007); Nair et al. (2002).

Experimental top

Distilled methylamine (3.00 g, 96.8 mmol) was added in purified methanol (30 ml) in a two neck flask (250 ml) and stirred for ten minutes at 273 K. Carbon disulfide 7.4 ml (117 mmol) was added drop by drop into the two neck flask containing methylamine and a colorless precipitate was formed at once. The stirring was continued for three hours to complete the reaction. The solvent was removed by vacuum distillation. The solid product was washed several times with methanol. The colorless product was purified by recrystallization from 1,1-dichloromethane/pet ether (8:2) V/V), to give fine crystals of the title compound with an overall yield of 85%.

Refinement top

All hydrogen atoms were initially located in a difference Fourier map. H atoms on C and N were refined with a riding model, C-H = 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl groups, C-H = 0.97 Å with Uiso(H) = 1.2 Ueq(C) for methylene groups, and N-H = 0.86 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[(Methylcarbamothioyl)disulfanyl]methyl N-methylcarbamodithioate top
Crystal data top
C5H10N2S5V = 546.0 (2) Å3
Mr = 258.45Z = 2
Triclinic, P1F(000) = 268
a = 7.188 (1) ÅDx = 1.572 Mg m3
b = 7.884 (2) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.219 (2) ŵ = 1.01 mm1
α = 101.23 (3)°T = 293 K
β = 96.85 (3)°Needle, yellow
γ = 102.74 (3)°0.30 × 0.11 × 0.10 mm
Data collection top
Stoe IPDS
diffractometer
1924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.101
Graphite monochromatorθmax = 26.4°, θmin = 4.1°
ω scansh = 88
4080 measured reflectionsk = 99
2077 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.0335P]
where P = (Fo2 + 2Fc2)/3
2077 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C5H10N2S5γ = 102.74 (3)°
Mr = 258.45V = 546.0 (2) Å3
Triclinic, P1Z = 2
a = 7.188 (1) ÅMo Kα radiation
b = 7.884 (2) ŵ = 1.01 mm1
c = 10.219 (2) ÅT = 293 K
α = 101.23 (3)°0.30 × 0.11 × 0.10 mm
β = 96.85 (3)°
Data collection top
Stoe IPDS
diffractometer
1924 reflections with I > 2σ(I)
4080 measured reflectionsRint = 0.101
2077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.15Δρmax = 0.53 e Å3
2077 reflectionsΔρmin = 0.37 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24777 (9)0.73176 (9)0.11879 (5)0.04736 (19)
S20.39011 (7)0.69015 (8)0.38202 (5)0.03952 (18)
S30.28393 (7)0.64232 (7)0.55098 (5)0.03611 (17)
S40.22813 (8)0.85040 (8)0.80525 (5)0.04221 (18)
S50.14480 (9)0.82971 (9)0.62019 (6)0.04559 (19)
N10.0187 (3)0.6694 (2)0.30088 (18)0.0370 (4)
H10.00900.65100.38030.044*
N20.1092 (3)0.7742 (3)0.86906 (19)0.0440 (5)
H20.03580.76390.93840.053*
C10.1562 (3)0.6703 (4)0.2139 (3)0.0485 (6)
H1A0.13700.77990.18370.073*
H1B0.26190.66040.26340.073*
H1C0.18510.57130.13690.073*
C20.1897 (3)0.6948 (3)0.26569 (19)0.0333 (4)
C30.3067 (3)0.8671 (3)0.6478 (2)0.0390 (5)
H3A0.44020.93590.66360.047*
H3B0.22750.92670.59830.047*
C40.0280 (3)0.8118 (3)0.7646 (2)0.0346 (4)
C50.3151 (3)0.7494 (4)0.8732 (3)0.0488 (6)
H5A0.34320.86380.89780.073*
H5B0.34980.68120.93880.073*
H5C0.38810.68670.78560.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0507 (4)0.0674 (4)0.0306 (3)0.0158 (3)0.0153 (2)0.0206 (3)
S20.0326 (3)0.0578 (4)0.0331 (3)0.0132 (2)0.0107 (2)0.0168 (3)
S30.0393 (3)0.0427 (3)0.0300 (3)0.0103 (2)0.0079 (2)0.0157 (2)
S40.0366 (3)0.0623 (4)0.0270 (3)0.0115 (3)0.0030 (2)0.0107 (3)
S50.0446 (3)0.0627 (4)0.0328 (3)0.0181 (3)0.0012 (2)0.0168 (3)
N10.0357 (9)0.0483 (10)0.0304 (8)0.0113 (8)0.0081 (7)0.0145 (8)
N20.0385 (10)0.0645 (12)0.0333 (9)0.0154 (9)0.0056 (8)0.0187 (9)
C10.0379 (13)0.0657 (15)0.0452 (12)0.0161 (11)0.0032 (10)0.0193 (12)
C20.0388 (11)0.0358 (9)0.0276 (9)0.0105 (8)0.0077 (8)0.0104 (8)
C30.0413 (11)0.0417 (11)0.0331 (10)0.0045 (9)0.0093 (9)0.0116 (9)
C40.0385 (11)0.0382 (10)0.0290 (9)0.0136 (8)0.0061 (8)0.0073 (8)
C50.0395 (13)0.0686 (16)0.0417 (12)0.0180 (12)0.0101 (10)0.0137 (12)
Geometric parameters (Å, º) top
S1—C21.6671 (18)N2—C51.456 (3)
S2—C21.767 (2)N2—H20.8600
S2—S32.0364 (8)C1—H1A0.9600
S3—C31.816 (2)C1—H1B0.9600
S4—C41.782 (2)C1—H1C0.9600
S4—C31.787 (2)C3—H3A0.9700
S5—C41.655 (2)C3—H3B0.9700
N1—C21.306 (3)C5—H5A0.9600
N1—C11.453 (3)C5—H5B0.9600
N1—H10.8600C5—H5C0.9600
N2—C41.328 (3)
C2—S2—S3105.99 (7)S1—C2—S2113.24 (12)
C3—S3—S2101.85 (7)S4—C3—S3107.88 (10)
C4—S4—C3103.25 (10)S4—C3—H3A110.1
C2—N1—C1123.90 (17)S3—C3—H3A110.1
C2—N1—H1118.0S4—C3—H3B110.1
C1—N1—H1118.0S3—C3—H3B110.1
C4—N2—C5123.93 (18)H3A—C3—H3B108.4
C4—N2—H2118.0N2—C4—S5125.43 (17)
C5—N2—H2118.0N2—C4—S4109.93 (14)
N1—C1—H1A109.5S5—C4—S4124.59 (12)
N1—C1—H1B109.5N2—C5—H5A109.5
H1A—C1—H1B109.5N2—C5—H5B109.5
N1—C1—H1C109.5H5A—C5—H5B109.5
H1A—C1—H1C109.5N2—C5—H5C109.5
H1B—C1—H1C109.5H5A—C5—H5C109.5
N1—C2—S1127.70 (16)H5B—C5—H5C109.5
N1—C2—S2119.06 (14)
C2—S2—S3—C390.13 (11)S2—S3—C3—S4177.57 (9)
C1—N1—C2—S10.4 (3)C5—N2—C4—S52.4 (3)
C1—N1—C2—S2179.97 (18)C5—N2—C4—S4175.1 (2)
S3—S2—C2—N10.01 (19)C3—S4—C4—N2172.23 (16)
S3—S2—C2—S1179.71 (9)C3—S4—C4—S510.31 (17)
C4—S4—C3—S383.86 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S30.862.503.073 (2)125
N1—H1···S3i0.863.023.595 (2)127
N2—H2···S1ii0.862.673.515 (2)168
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H10N2S5
Mr258.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.188 (1), 7.884 (2), 10.219 (2)
α, β, γ (°)101.23 (3), 96.85 (3), 102.74 (3)
V3)546.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.11 × 0.10
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4080, 2077, 1924
Rint0.101
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.15
No. of reflections2077
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.37

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S30.862.503.073 (2)125.0
N1—H1···S3i0.863.023.595 (2)126.5
N2—H2···S1ii0.862.673.515 (2)167.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan (HEC) for financial support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 486–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. Y. & Bao, W. L. (2007). Tetrahedron Lett. 48, 4785–4788.  Web of Science CrossRef CAS Google Scholar
First citationNair, P. S., Radhakrishan, T., Revaprasadu, N., Kolawole, G. A. & O' Brien, P. (2002). J. Mater. Chem. 12, 2722–2725.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds