supplementary materials


pk2266 scheme

Acta Cryst. (2010). E66, m1264    [ doi:10.1107/S1600536810036299 ]

([eta]5-Pentamethylcyclopentadienyl)([eta]6-toluene)ruthenium(II) hexafluoridophosphate

W. W. N. O, A. J. Lough and R. H. Morris

Abstract top

In the title complex, [Ru(C7H8)(C10H15)]PF6, the cation lies on a mirror plane and the anion lies on an inversion center. The distance between the Ru atom and the centroid of the benzene ring is 1.706 (5) Å and the distance between the Ru atom and the cyclopentadienyl ring is 1.811 (5) Å. The crystal structure is stabilized by weak C-H...F hydrogen bonds. The H atoms of the methyl groups which lie on the mirror plane are disordered over two sites with equal occupancies.

Comment top

The heterolytic splitting of dihydrogen across a transition metal-amido bond provides an important metal-hydride and a protic amine group for the efficient catalytic homogenous hydrogenation of polar bonds to produce valuable alcohols and amines (Clapham et al., 2004). We are interested in the use of chelating primary amine and N-heterocyclic carbene ligands (C—NH2) that resemble those of the phosphine-amine analogues. Thus, the transmetalation reaction of 1.5 equiv of RuCp*(cod)Cl (cod = 1,5-cyclooctadiene) and [Ni(C—NH2)2] (PF6)2 in acetonitrile, and subsequent workup in tetrahydrofuran and excess pyridine afforded the active catalyst, [RuCp*(C—NH2)(py)]PF6 (Fig. 2), for the hydrogenation of polar bonds in basic solution (O et al., 2010). The use of 2 equiv. of RuCp*(cod)Cl and 1 equiv of [Ni(C—NH2)2] (PF6)2, with subsequent workup in tetrahydrofuran, toluene and pyridine mixtures, however, afforded selective crystallization of small amounts of title molecule, [Cp*Ru(η6-toluene)]PF6, as a side product. We report here the crystal structure of the title molecule. The synthesis of such compounds have been reported elsewhere (Fagan et al., 1989; Schmid et al., 2003; Loughrey et al., 2008). The spectroscopic data for the reaction mixture containing the title molecule matches those reported in the literature (Arliguie et al., 1988; Loughrey et al., 2008).

The molecular structure of the title complex is shown in Fig. 1. The title sandwich complex consists of a coordinated planar arene ring and a pentamethylcyclopentadienyl ring in η6– and η5– hapticities, respectively. The bond distances are in reasonable agreement for analogous complexes with, for example, coordinated hexamethylbenzene and anisole in η6– hapticities (Fagan et al., 1989, 1990; He et al., 1991; Nolan et al., 1993). The distance between the Ru atom and the centroid of the benzene ring is 1.706 (5) Å and the distance between the Ru atom and the cyclopentadienyl ring is 1.811 (5) Å. The angle formed with the centroids of the coordinated rings and the RuII ion is 179.49 (15)°. The crystal structure is stabilized by weak C—H···F hydrogen bonds.

Related literature top

For reviews on half-sandwich complexes containing group 8 metals, see: Coville et al. (1992); Jiménez-Tenorio et al. (2004). For the synthesis and properties of the title complex, see: Arliguie et al. (1988); Schmid et al. (2003); Loughrey et al. (2008). For related structures, see: Fagan et al. (1989, 1990); He et al. (1991); Nolan et al. (1993). For bifunctional catalysts for the homogenous hydrogenation of polar bonds, see: Clapham et al. (2004); O et al. (2010).

Experimental top

A Schlenk flask was charged with [Ni(C—NH2)2](PF6)2 (32 mg, 0.084 mmol) and RuCp*(cod)Cl (30 mg, 0.041 mmol). Dry acetonitrile (8 ml) was added to the reaction mixture, and it was refluxed under an argon atmosphere for 3 h. The deep green solution was evaporated under reduced pressure, and the residue was extracted with oxygen-free tetrahydrofuran (4 ml) and toluene (1 ml), and filtered through a pad of Celite under a nitrogen atmosphere. To the yellow-brown solution was added pyridine (11 mg, 15 fold excess), and the orange coloured solution was evaporated under reduced pressure. The solid residue was extracted with tetrahydrofuran (3 ml) and dichloromethane (1 ml). Addition of diethyl ether (8 ml) to this solution afforded an orange precipitate, which gave the crude products of [RuCp*(C—NH2)py]PF6 and about 17% of the title salt, [Cp*Ru(η6-toluene)]PF6, as determined by 1H NMR spectroscopy of the bulk solid. This was filtered and dried in vacuum to yield an orange powder. Suitable crystals for an X-ray diffraction study were obtained by slow diffusion of diethyl ether into a saturated solution of the mixture in acetone under a nitrogen atmosphere to afford colourless blocks.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H distances ranging from 0.95 to 1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability ellipsoids. Atoms labeled with suffixes 'a' and 'b' are related by the symmetry codes (-x, -y + 1, -z + 1) and (x, -y + 1/2, z) respectively.
[Figure 2] Fig. 2. The reaction scheme.
(η5-Pentamethylcyclopentadienyl)(η6-toluene)ruthenium(II) hexafluoridophosphate top
Crystal data top
[Ru(C7H8)(C10H15)]PF6F(000) = 952
Mr = 473.39Dx = 1.696 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 11870 reflections
a = 13.9735 (4) Åθ = 2.7–27.5°
b = 15.3266 (4) ŵ = 0.99 mm1
c = 8.6576 (6) ÅT = 150 K
V = 1854.17 (15) Å3Block, colourless
Z = 40.22 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2200 independent reflections
Radiation source: fine-focus sealed tube1611 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 1718
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1519
Tmin = 0.711, Tmax = 0.863l = 1111
11870 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.065P)2 + 3.7819P]
where P = (Fo2 + 2Fc2)/3
2200 reflections(Δ/σ)max = 0.003
128 parametersΔρmax = 2.11 e Å3
0 restraintsΔρmin = 2.03 e Å3
Crystal data top
[Ru(C7H8)(C10H15)]PF6V = 1854.17 (15) Å3
Mr = 473.39Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.9735 (4) ŵ = 0.99 mm1
b = 15.3266 (4) ÅT = 150 K
c = 8.6576 (6) Å0.22 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2200 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1611 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.863Rint = 0.062
11870 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.131Δρmax = 2.11 e Å3
S = 1.07Δρmin = 2.03 e Å3
2200 reflectionsAbsolute structure: ?
128 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.09419 (3)0.25000.05036 (5)0.02470 (18)
C10.0364 (4)0.25000.1948 (8)0.0364 (15)
H10.04140.25000.30420.044*
C20.0326 (3)0.1709 (3)0.1144 (5)0.0329 (10)
H2A0.02350.11530.17300.040*
C30.0226 (3)0.1708 (3)0.0472 (5)0.0318 (10)
H3A0.00650.11470.10050.038*
C40.0174 (4)0.25000.1323 (7)0.0300 (13)
C50.2303 (3)0.2969 (3)0.0428 (5)0.0266 (9)
C60.2204 (3)0.3259 (3)0.1143 (5)0.0266 (9)
C70.2144 (4)0.25000.2112 (7)0.0267 (13)
C80.0027 (5)0.25000.3057 (7)0.0393 (16)
H8A0.06340.23630.35710.059*0.50
H8B0.04520.20600.33330.059*0.50
H8C0.01940.30770.33890.059*0.50
C90.2427 (3)0.3550 (3)0.1801 (6)0.0391 (11)
H9A0.30970.37330.18750.059*
H9B0.20180.40650.16890.059*
H9C0.22470.32320.27390.059*
C100.2220 (3)0.4184 (3)0.1676 (6)0.0405 (12)
H10A0.28830.43680.18460.061*
H10B0.18600.42350.26440.061*
H10C0.19260.45570.08880.061*
C110.2061 (4)0.25000.3875 (8)0.0399 (16)
H11A0.18160.30660.42240.060*0.50
H11B0.26920.23970.43310.060*0.50
H11C0.16200.20370.42000.060*0.50
P10.00000.50000.50000.0282 (4)
F10.09922 (18)0.5503 (2)0.4824 (4)0.0454 (7)
F20.0208 (2)0.51551 (18)0.3204 (3)0.0450 (7)
F30.0520 (2)0.40978 (18)0.4592 (3)0.0435 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0238 (3)0.0249 (3)0.0255 (3)0.0000.00149 (19)0.000
C10.024 (3)0.052 (4)0.033 (4)0.0000.005 (3)0.000
C20.026 (2)0.034 (2)0.039 (3)0.0065 (18)0.0021 (19)0.011 (2)
C30.028 (2)0.031 (2)0.036 (3)0.0049 (18)0.0049 (18)0.002 (2)
C40.026 (3)0.038 (4)0.025 (3)0.0000.004 (2)0.000
C50.023 (2)0.029 (2)0.028 (2)0.0033 (17)0.0042 (16)0.0022 (18)
C60.0190 (19)0.033 (2)0.028 (2)0.0030 (17)0.0053 (16)0.0073 (18)
C70.021 (3)0.040 (3)0.019 (3)0.0000.001 (2)0.000
C80.042 (4)0.052 (4)0.024 (3)0.0000.003 (3)0.000
C90.041 (3)0.042 (3)0.035 (3)0.001 (2)0.007 (2)0.012 (2)
C100.037 (2)0.036 (3)0.049 (3)0.005 (2)0.011 (2)0.011 (2)
C110.025 (3)0.046 (4)0.049 (4)0.0000.011 (3)0.000
P10.0331 (8)0.0276 (8)0.0240 (8)0.0019 (6)0.0018 (7)0.0006 (7)
F10.0403 (16)0.0456 (18)0.0502 (18)0.0127 (12)0.0027 (13)0.0017 (14)
F20.0653 (18)0.0425 (16)0.0273 (14)0.0008 (14)0.0050 (13)0.0005 (13)
F30.0556 (18)0.0311 (15)0.0438 (17)0.0070 (13)0.0045 (13)0.0018 (12)
Geometric parameters (Å, °) top
Ru1—C72.181 (5)C6—C71.436 (5)
Ru1—C62.184 (4)C6—C101.491 (6)
Ru1—C6i2.184 (4)C7—C6i1.436 (5)
Ru1—C52.187 (4)C7—C111.531 (9)
Ru1—C5i2.187 (4)C8—H8A0.9800
Ru1—C32.203 (4)C8—H8B0.9800
Ru1—C3i2.203 (4)C8—H8C0.9800
Ru1—C12.211 (6)C9—H9A0.9800
Ru1—C22.217 (4)C9—H9B0.9800
Ru1—C2i2.217 (4)C9—H9C0.9800
Ru1—C42.220 (6)C10—H10A0.9800
C1—C21.398 (6)C10—H10B0.9800
C1—C2i1.398 (6)C10—H10C0.9800
C1—H10.9500C11—H11A0.9800
C2—C31.406 (6)C11—H11B0.9800
C2—H2A1.0000C11—H11C0.9800
C3—C41.422 (6)P1—F1ii1.594 (3)
C3—H3A1.0000P1—F11.594 (3)
C4—C3i1.422 (6)P1—F2ii1.599 (3)
C4—C81.515 (9)P1—F21.599 (3)
C5—C61.437 (6)P1—F3ii1.601 (3)
C5—C5i1.437 (9)P1—F31.601 (3)
C5—C91.495 (6)
C7—Ru1—C638.42 (14)C2—C3—Ru172.0 (2)
C7—Ru1—C6i38.42 (14)C4—C3—Ru171.9 (3)
C6—Ru1—C6i64.3 (2)C2—C3—H3A118.9
C7—Ru1—C564.28 (17)C4—C3—H3A118.9
C6—Ru1—C538.40 (15)Ru1—C3—H3A118.9
C6i—Ru1—C564.29 (15)C3i—C4—C3117.3 (6)
C7—Ru1—C5i64.28 (17)C3i—C4—C8121.3 (3)
C6—Ru1—C5i64.29 (15)C3—C4—C8121.3 (3)
C6i—Ru1—C5i38.40 (15)C3i—C4—Ru170.6 (3)
C5—Ru1—C5i38.4 (2)C3—C4—Ru170.6 (3)
C7—Ru1—C3144.60 (13)C8—C4—Ru1127.7 (4)
C6—Ru1—C3171.56 (16)C6—C5—C5i108.0 (2)
C6i—Ru1—C3113.71 (17)C6—C5—C9125.4 (4)
C5—Ru1—C3133.16 (16)C5i—C5—C9126.5 (3)
C5i—Ru1—C3108.77 (17)C6—C5—Ru170.7 (2)
C7—Ru1—C3i144.60 (13)C5i—C5—Ru170.81 (11)
C6—Ru1—C3i113.71 (17)C9—C5—Ru1126.1 (3)
C6i—Ru1—C3i171.56 (16)C5—C6—C7107.9 (4)
C5—Ru1—C3i108.77 (17)C5—C6—C10125.8 (4)
C5i—Ru1—C3i133.16 (16)C7—C6—C10126.2 (4)
C3—Ru1—C3i66.9 (2)C5—C6—Ru170.9 (2)
C7—Ru1—C1105.9 (2)C7—C6—Ru170.7 (3)
C6—Ru1—C1121.52 (17)C10—C6—Ru1126.6 (3)
C6i—Ru1—C1121.52 (17)C6i—C7—C6108.1 (5)
C5—Ru1—C1157.77 (14)C6i—C7—C11125.9 (2)
C5i—Ru1—C1157.77 (14)C6—C7—C11125.9 (2)
C3—Ru1—C166.77 (19)C6i—C7—Ru170.9 (3)
C3i—Ru1—C166.77 (19)C6—C7—Ru170.9 (3)
C7—Ru1—C2117.11 (16)C11—C7—Ru1125.3 (4)
C6—Ru1—C2150.82 (17)C4—C8—H8A109.5
C6i—Ru1—C2106.93 (16)C4—C8—H8B109.5
C5—Ru1—C2165.19 (17)H8A—C8—H8B109.5
C5i—Ru1—C2127.41 (17)C4—C8—H8C109.5
C3—Ru1—C237.09 (17)H8A—C8—H8C109.5
C3i—Ru1—C278.75 (17)H8B—C8—H8C109.5
C1—Ru1—C236.81 (14)C5—C9—H9A109.5
C7—Ru1—C2i117.11 (16)C5—C9—H9B109.5
C6—Ru1—C2i106.93 (16)H9A—C9—H9B109.5
C6i—Ru1—C2i150.82 (17)C5—C9—H9C109.5
C5—Ru1—C2i127.41 (17)H9A—C9—H9C109.5
C5i—Ru1—C2i165.19 (17)H9B—C9—H9C109.5
C3—Ru1—C2i78.75 (17)C6—C10—H10A109.5
C3i—Ru1—C2i37.09 (17)C6—C10—H10B109.5
C1—Ru1—C2i36.81 (14)H10A—C10—H10B109.5
C2—Ru1—C2i66.3 (2)C6—C10—H10C109.5
C7—Ru1—C4174.3 (2)H10A—C10—H10C109.5
C6—Ru1—C4138.37 (15)H10B—C10—H10C109.5
C6i—Ru1—C4138.37 (15)C7—C11—H11A109.5
C5—Ru1—C4110.35 (18)C7—C11—H11B109.5
C5i—Ru1—C4110.35 (18)H11A—C11—H11B109.5
C3—Ru1—C437.51 (13)C7—C11—H11C109.5
C3i—Ru1—C437.51 (13)H11A—C11—H11C109.5
C1—Ru1—C479.8 (2)H11B—C11—H11C109.5
C2—Ru1—C467.48 (17)F1ii—P1—F1180.000 (1)
C2i—Ru1—C467.48 (17)F1ii—P1—F2ii89.60 (15)
C2—C1—C2i120.1 (6)F1—P1—F2ii90.40 (15)
C2—C1—Ru171.8 (3)F1ii—P1—F290.40 (15)
C2i—C1—Ru171.8 (3)F1—P1—F289.60 (15)
C2—C1—H1119.9F2ii—P1—F2180.000 (1)
C2i—C1—H1119.9F1ii—P1—F3ii90.12 (16)
Ru1—C1—H1128.7F1—P1—F3ii89.88 (16)
C1—C2—C3120.1 (4)F2ii—P1—F3ii89.79 (14)
C1—C2—Ru171.4 (3)F2—P1—F3ii90.21 (14)
C3—C2—Ru170.9 (2)F1ii—P1—F389.88 (16)
C1—C2—H2A119.4F1—P1—F390.12 (16)
C3—C2—H2A119.4F2ii—P1—F390.21 (14)
Ru1—C2—H2A119.4F2—P1—F389.79 (14)
C2—C3—C4121.2 (4)F3ii—P1—F3180.0
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2i1.002.463.450 (4)173
C2—H2A···F3i1.002.543.243 (5)127
C3—H3A···F2iii1.002.443.356 (5)151
C8—H8C···F3iv0.982.553.258 (5)129
C10—H10B···F1ii0.982.543.515 (6)175
Symmetry codes: (i) x, −y+1/2, z; (iii) −x, y−1/2, −z; (iv) x, y, z−1; (ii) −x, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F2i1.002.463.450 (4)173
C2—H2A···F3i1.002.543.243 (5)127
C3—H3A···F2ii1.002.443.356 (5)151
C8—H8C···F3iii0.982.553.258 (5)129
C10—H10B···F1iv0.982.543.515 (6)175
Symmetry codes: (i) x, −y+1/2, z; (ii) −x, y−1/2, −z; (iii) x, y, z−1; (iv) −x, −y+1, −z+1.
Acknowledgements top

NSERC Canada is thanked for a Discovery Grant to RHM. NSERC Canada and the Ministry of Education of Ontario are thanked for graduate scholarships to WWNO.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Arliguie, T., Chaudret, B., Jalon, F. & Lahoz, F. (1988). Chem. Comm. p. 998.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Clapham, S. E., Hadzovic, A. & Morris, R. H. (2004). Coord. Chem. Rev. 248, 2201–2237.

Coville, N. J., Duplooy, K. E. & Pickl, W. (1992). Coord. Chem. Rev. 116, 1–267.

Fagan, P. J., Mahoney, W. S., Calabrese, J. C. & Williams, I. D. (1990). Organometallics, 9, 1843–1852.

Fagan, P. J., Ward, M. D. & Calabrese, J. C. (1989). J. Am. Chem. Soc. 111, 1698–1719.

He, X. D., Chaudret, B., Dahan, F. & Huang, Y.-S. (1991). Organometallics, 10, 970–979.

Jiménez-Tenorio, M., Puerta, M. C. & Valerga, V. (2004). Eur. J. Inorg. Chem. pp. 17–32.

O, W. W. N., Lough, A. J. & Morris, R. H. (2010). Chem. Commun. Accepted.

Loughrey, B. T., Healy, P. C., Parsons, R. G. & Williams, M. L. (2008). Inorg. Chem. 47, 8589–8591.

Nolan, S. P., Martin, K. L., Buzatu, D., Trudell, M. L., Stevens, E. D. & Fagan, P. (1993). J. Struct. Chem. 4, 367–375.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Schmid, A., Holger, P. & Lindel, T. (2003). Eur. J. Inorg. Chem. pp. 2255–2263.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.