supplementary materials


su2209 scheme

Acta Cryst. (2010). E66, m1263    [ doi:10.1107/S1600536810036111 ]

Poly[[mu]6-adipato-diaquadi-[mu]2-oxalato-digadolinium(III)]

Z.-F. Li and C.-X. Wang

Abstract top

In the centrosymmetric title compound, [Gd2(C6H8O4)(C2O4)2(H2O)2]n, the Gd3+ cations are each coordinated by nine O atoms, three from adipate anions, two from oxalate anions and one from an aqua ligand, completing a distorted tricapped trigonal-prismatic geometry. These tricapped trigonal prisms are bridged by the adipate ligands, generating layers lying parallel to (010). The coordination polymer layers are linked into a three-dimensional framework by the rigid oxalate ligands. The adipate and oxalate ions are all located on centers of inversion. A part of the adipate anion is disordered over two positions in a 0.75:0.25 ratio.

Comment top

As shown in Fig. 1 the asymmetric unit of the title compound consists of one Gd3+ cation, half of an adipate anion, two half oxalate anions and one aqua ligand. The Gd atom is coordinated by nine oxygen atoms, in which four oxygen atoms are from three adipate anions, four from two oxalate anions and one from a water molecule, to form a SmO9 polyhedron with a distorted tricapped trigonal-prismatic geometry. The Gd—O(adipate) distances vary in the range of 2.430 (4)–2.575 (4) Å (average 2.512 (4) Å), which is nearly identical to the value of 2.425 (8)–2.611 (8) Å (average 2.471 (8) Å) observed in Gd2(C6H8O4)3(H2O)4 (Dimos et al., 2002). The Gd—O(oxalate) distances are in the range of 2.385 (4)–2.540 (4) Å, which are usual for lanthanide oxalates complexes (Trombe & Mohanu, 2004). In the title complex, the adipate anions are located on inversion centers and atom C3 is positionally disordered (C3A and C3B; occupancies 0.75/0.25). Two carboxylate oxygen atoms chelate one Gd atom with each oxygen atom additionally bonded to another Gd atom. To the best of our knowledge, this η23-η23-chelating-bridging octadentate coordination mode of the adipate ligand has not been reported previously.

Through the terminal carboxylato bridging interactions, the GdO9 polyhedra are edged-shared to generate metal-oxygen chains extending infinitely along [100], in which the adjacent Gd···Gd distances are 4.23 (3) Å and 4.25 (2) Å, respectively. Along [001] the chains are linked by the adipate anions into layers parallel to (010) (Fig. 2). Two symmetry independent oxalate ions are also located on centers of inversion and act as double bidentate (tetradentate) ligands in a linear chain, which connect Gd atoms to form zigzag chains along [001]. Through the oxalate and adipate ligand bridging interactions, the Gd atoms build up a three-dimensional open framework with the channels propagating in [001] (Fig. 3). The aqua ligand provides H-bond donors which participate in O-H···O hydrogen bonds with the oxalate atoms O3 and O6 (Table 1).

Related literature top

For structures involving adipate ligands and lanthanide ions, see: Dimos et al. (2002). For structures involving oxalate ligands and lanthanide ions, see: Trombe & Mohanu (2004).

Experimental top

A mixture of GdCl3.6H2O(1.00 mmol, 0.36 g), oxalic acid (0.50 mmol, 0.05 g), adipic acid (0.50 mmol, 0.07 g), NaOH (2.00 mmol, 0.08 g) and H2O (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. On cooling a small amount of colorless plate-like crystals were obtained.They were filtered off and washed with water and acetone.

Refinement top

Atom C3 of the adipate anion is positionally disordered (C3A and C3B) and these atoms were refined with occupancies of 0.75/0.25. The water H-atoms were located in difference Fourier maps and were refined with distance restraints: O—H distance of 0.84 (2) Å) and Uiso(H) = 1.5Ueq(O). The C-bound atoms were included in calculated positions and treated as riding atoms: C–H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The highest density peak and deepest hole are located at 0.97 Å and 0.89 Å, respectively, from the Gd atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The fragment of the molecuar structure of the title compound, with the atom-numbering scheme. Displacement ellipsoidsare drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, - y, 1- z; (iv) - x, - y, -z; (v) 1 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. A view along the b-axis of the two-dimensional layer structure formed by the connectivity between the Gd atoms and the adipate moieties present in the title compound [the C-bound H-atoms and atom C3B have been omitted for clarity].
[Figure 3] Fig. 3. A view along the c-axis of the three-dimensional framework of the title compound [the C-bound H-atoms and atom C3B have been omitted for clarity].
Poly[µ6-adipato-diaquadi-µ2-oxalato-digadolinium(III)] top
Crystal data top
[Gd2(C6H8O4)(C2O4)2(H2O)2]Z = 1
Mr = 670.70F(000) = 312
Triclinic, P1Dx = 3.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.815 (4) ÅCell parameters from 238 reflections
b = 6.982 (4) Åθ = 2.6–28.3°
c = 8.997 (7) ŵ = 9.02 mm1
α = 104.759 (10)°T = 295 K
β = 108.11 (1)°Plate, colorless
γ = 104.320 (7)°0.23 × 0.11 × 0.08 mm
V = 367.8 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1236 independent reflections
Radiation source: fine-focus sealed tube1157 reflections with I > 2σ(I)
graphiteRint = 0.013
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 78
Tmin = 0.241, Tmax = 0.491k = 78
1751 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
1236 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 1.56 e Å3
2 restraintsΔρmin = 1.41 e Å3
Crystal data top
[Gd2(C6H8O4)(C2O4)2(H2O)2]γ = 104.320 (7)°
Mr = 670.70V = 367.8 (4) Å3
Triclinic, P1Z = 1
a = 6.815 (4) ÅMo Kα radiation
b = 6.982 (4) ŵ = 9.02 mm1
c = 8.997 (7) ÅT = 295 K
α = 104.759 (10)°0.23 × 0.11 × 0.08 mm
β = 108.11 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1236 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1157 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.491Rint = 0.013
1751 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 1.56 e Å3
S = 1.05Δρmin = 1.41 e Å3
1236 reflectionsAbsolute structure: ?
127 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd0.15528 (4)0.34583 (3)0.36187 (3)0.01206 (12)
O10.1523 (6)0.5226 (6)0.6494 (4)0.0175 (8)
O20.4788 (6)0.5964 (5)0.6393 (4)0.0156 (8)
O30.2680 (6)0.1539 (6)0.5394 (4)0.0168 (8)
O40.1538 (6)0.0817 (6)0.6500 (5)0.0191 (8)
O50.0130 (7)0.2517 (6)0.0669 (4)0.0191 (8)
O60.1324 (7)0.0169 (6)0.1924 (5)0.0210 (9)
O70.2703 (7)0.6881 (6)0.3356 (5)0.0218 (9)
H7A0.403 (5)0.763 (10)0.370 (8)0.033*
H7B0.218 (12)0.757 (10)0.281 (8)0.033*
C10.3614 (9)0.6107 (8)0.7255 (7)0.0144 (11)
C20.4651 (10)0.7225 (9)0.9107 (7)0.0193 (12)
H2A0.40120.82850.94050.023*0.75
H2B0.62180.79530.94480.023*0.75
H2C0.35170.74210.95030.023*0.25
H2D0.56960.86160.93730.023*0.25
C3A0.4343 (15)0.5720 (14)1.0070 (10)0.0262 (17)0.75
H3A10.48000.65501.12420.031*0.75
H3A20.27900.48640.96330.031*0.75
C3B0.588 (4)0.598 (4)1.005 (3)0.0262 (17)0.25
H3B10.68300.55440.95310.031*0.25
H3B20.67910.68791.12130.031*0.25
C40.1222 (8)0.0203 (8)0.5547 (6)0.0140 (11)
C50.0433 (9)0.0774 (8)0.0367 (7)0.0143 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd0.00971 (18)0.01274 (17)0.00989 (17)0.00183 (12)0.00225 (12)0.00217 (11)
O10.016 (2)0.0173 (19)0.0148 (19)0.0059 (16)0.0033 (16)0.0017 (16)
O20.013 (2)0.0160 (19)0.0132 (19)0.0034 (16)0.0050 (16)0.0007 (15)
O30.011 (2)0.0182 (19)0.0161 (19)0.0011 (16)0.0029 (16)0.0050 (16)
O40.013 (2)0.021 (2)0.020 (2)0.0031 (17)0.0015 (16)0.0105 (17)
O50.021 (2)0.018 (2)0.0131 (19)0.0066 (17)0.0035 (16)0.0023 (16)
O60.027 (2)0.021 (2)0.014 (2)0.0086 (18)0.0061 (18)0.0053 (17)
O70.017 (2)0.020 (2)0.029 (2)0.0045 (18)0.0081 (19)0.0134 (18)
C10.016 (3)0.011 (2)0.013 (3)0.006 (2)0.002 (2)0.005 (2)
C20.015 (3)0.020 (3)0.018 (3)0.003 (2)0.006 (2)0.003 (2)
C3A0.026 (4)0.037 (4)0.016 (4)0.013 (4)0.009 (3)0.007 (4)
C3B0.026 (4)0.037 (4)0.016 (4)0.013 (4)0.009 (3)0.007 (4)
C40.009 (3)0.016 (3)0.012 (3)0.003 (2)0.002 (2)0.001 (2)
C50.008 (3)0.016 (3)0.016 (3)0.001 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, °) top
Gd—O12.575 (4)O7—H7B0.83 (7)
Gd—O1i2.473 (4)C1—C21.489 (8)
Gd—O22.569 (4)C2—C3A1.538 (10)
Gd—O2ii2.430 (4)C2—C3B1.57 (3)
Gd—O32.403 (4)C2—H2A0.9700
Gd—O4iii2.385 (4)C2—H2B0.9700
Gd—O52.374 (4)C2—H2C0.9700
Gd—O6iv2.540 (4)C2—H2D0.9700
Gd—O72.420 (4)C3A—C3Av1.510 (16)
O1—C11.274 (7)C3A—H3A10.9700
O2—C11.279 (6)C3A—H3A20.9700
O3—C41.252 (7)C3B—C3Bv1.54 (5)
O4—C41.249 (6)C3B—H3B10.9700
O5—C51.253 (6)C3B—H3B20.9700
O6—C51.246 (7)C4—C4iii1.558 (10)
O7—H7A0.84 (6)C5—C5iv1.546 (10)
O5—Gd—O4iii89.95 (13)C4—O3—Gd118.6 (3)
O5—Gd—O3133.53 (13)C4—O4—Gdiii119.1 (3)
O4iii—Gd—O368.29 (13)C5—O5—Gd123.7 (3)
O5—Gd—O778.95 (14)C5—O6—Gdiv117.9 (3)
O4iii—Gd—O7142.92 (13)Gd—O7—H7A122 (5)
O3—Gd—O7141.60 (14)Gd—O7—H7B139 (5)
O5—Gd—O2ii92.50 (13)H7A—O7—H7B97 (7)
O4iii—Gd—O2ii142.01 (12)O1—C1—O2118.3 (5)
O3—Gd—O2ii83.07 (12)O1—C1—C2120.4 (5)
O7—Gd—O2ii74.35 (13)O2—C1—C2121.2 (5)
O5—Gd—O1i81.91 (12)O1—C1—Gd59.4 (3)
O4iii—Gd—O1i69.18 (13)O2—C1—Gd59.1 (3)
O3—Gd—O1i122.76 (12)C2—C1—Gd174.0 (4)
O7—Gd—O1i74.25 (14)C1—C2—C3A112.9 (5)
O2ii—Gd—O1i148.60 (13)C1—C2—C3B112.6 (10)
O5—Gd—O6iv65.44 (13)C1—C2—H2A109.0
O4iii—Gd—O6iv70.90 (14)C3A—C2—H2A109.0
O3—Gd—O6iv68.66 (13)C3B—C2—H2A135.3
O7—Gd—O6iv131.77 (14)C1—C2—H2B109.0
O2ii—Gd—O6iv75.79 (13)C3A—C2—H2B109.0
O1i—Gd—O6iv127.57 (13)C3B—C2—H2B73.4
O5—Gd—O2147.43 (13)H2A—C2—H2B107.8
O4iii—Gd—O2122.50 (13)C1—C2—H2C109.1
O3—Gd—O269.27 (13)C3A—C2—H2C73.3
O7—Gd—O273.02 (13)C3B—C2—H2C109.1
O2ii—Gd—O264.38 (14)H2B—C2—H2C136.9
O1i—Gd—O2105.56 (12)C1—C2—H2D109.1
O6iv—Gd—O2124.28 (12)C3A—C2—H2D134.9
O5—Gd—O1147.09 (13)C3B—C2—H2D109.1
O4iii—Gd—O180.01 (13)H2C—C2—H2D107.8
O3—Gd—O171.21 (13)C3Av—C3A—C2112.2 (8)
O7—Gd—O190.34 (13)C3Av—C3A—H2C148.3
O2ii—Gd—O1114.63 (12)C3Av—C3A—H3A1109.2
O1i—Gd—O165.20 (14)C2—C3A—H3A1109.2
O6iv—Gd—O1136.78 (12)H2C—C3A—H3A191.7
O2—Gd—O150.45 (12)C3Av—C3A—H3A2109.2
O5—Gd—C1159.72 (13)C2—C3A—H3A2109.2
O4iii—Gd—C1100.86 (14)H2C—C3A—H3A285.5
O3—Gd—C166.75 (14)H3A1—C3A—H3A2107.9
O7—Gd—C182.15 (15)C3Bv—C3B—C2108 (2)
O2ii—Gd—C189.45 (14)C3Bv—C3B—H3B1110.1
O1i—Gd—C185.94 (14)C2—C3B—H3B1110.1
O6iv—Gd—C1134.31 (13)C3Bv—C3B—H3B2110.1
O2—Gd—C125.31 (13)C2—C3B—H3B2110.1
O1—Gd—C125.21 (14)H3B1—C3B—H3B2108.4
C1—O1—Gdi133.0 (3)O4—C4—O3126.3 (5)
C1—O1—Gd95.4 (3)O4—C4—C4iii117.1 (6)
Gdi—O1—Gd114.80 (14)O3—C4—C4iii116.6 (6)
C1—O2—Gdii147.7 (3)O6—C5—O5127.0 (5)
C1—O2—Gd95.5 (3)O6—C5—C5iv116.6 (6)
Gdii—O2—Gd115.62 (14)O5—C5—C5iv116.4 (6)
O5—Gd—O1—C1140.5 (3)O3—Gd—O5—C58.0 (5)
O4iii—Gd—O1—C1145.4 (3)O7—Gd—O5—C5148.3 (4)
O3—Gd—O1—C175.1 (3)O2ii—Gd—O5—C574.8 (4)
O7—Gd—O1—C170.5 (3)O1i—Gd—O5—C5136.2 (4)
O2ii—Gd—O1—C12.4 (3)O6iv—Gd—O5—C51.7 (4)
O1i—Gd—O1—C1143.0 (4)O2—Gd—O5—C5117.5 (4)
O6iv—Gd—O1—C197.7 (3)O1—Gd—O5—C5138.6 (4)
O2—Gd—O1—C13.1 (3)C1—Gd—O5—C5170.0 (4)
O5—Gd—O1—Gdi2.5 (3)Gdi—O1—C1—O2126.2 (4)
O4iii—Gd—O1—Gdi71.57 (16)Gd—O1—C1—O25.5 (5)
O3—Gd—O1—Gdi141.88 (18)Gdi—O1—C1—C255.3 (6)
O7—Gd—O1—Gdi72.44 (17)Gd—O1—C1—C2173.1 (4)
O2ii—Gd—O1—Gdi145.34 (15)Gdi—O1—C1—Gd131.6 (4)
O1i—Gd—O1—Gdi0.001 (2)Gdii—O2—C1—O1170.9 (4)
O6iv—Gd—O1—Gdi119.29 (18)Gd—O2—C1—O15.5 (5)
O2—Gd—O1—Gdi139.9 (2)Gdii—O2—C1—C27.6 (9)
C1—Gd—O1—Gdi143.0 (4)Gd—O2—C1—C2173.0 (4)
O5—Gd—O2—C1139.9 (3)Gdii—O2—C1—Gd165.4 (6)
O4iii—Gd—O2—C134.5 (3)O5—Gd—C1—O186.4 (5)
O3—Gd—O2—C179.2 (3)O4iii—Gd—C1—O134.7 (3)
O7—Gd—O2—C1108.2 (3)O3—Gd—C1—O195.2 (3)
O2ii—Gd—O2—C1171.4 (4)O7—Gd—C1—O1107.9 (3)
O1i—Gd—O2—C140.5 (3)O2ii—Gd—C1—O1177.9 (3)
O6iv—Gd—O2—C1122.4 (3)O1i—Gd—C1—O133.2 (3)
O1—Gd—O2—C13.1 (3)O6iv—Gd—C1—O1108.5 (3)
O5—Gd—O2—Gdii48.6 (3)O2—Gd—C1—O1174.4 (5)
O4iii—Gd—O2—Gdii136.96 (15)O5—Gd—C1—O288.0 (5)
O3—Gd—O2—Gdii92.21 (16)O4iii—Gd—C1—O2150.9 (3)
O7—Gd—O2—Gdii80.42 (17)O3—Gd—C1—O290.4 (3)
O2ii—Gd—O2—Gdii0.0O7—Gd—C1—O266.5 (3)
O1i—Gd—O2—Gdii148.11 (15)O2ii—Gd—C1—O27.7 (3)
O6iv—Gd—O2—Gdii49.0 (2)O1i—Gd—C1—O2141.2 (3)
O1—Gd—O2—Gdii174.5 (2)O6iv—Gd—C1—O277.1 (3)
C1—Gd—O2—Gdii171.4 (4)O1—Gd—C1—O2174.4 (5)
O5—Gd—O3—C472.7 (4)O1—C1—C2—C3A66.3 (7)
O4iii—Gd—O3—C45.0 (4)Gdiii—O4—C4—O3175.4 (4)
O7—Gd—O3—C4146.7 (3)Gdiii—O4—C4—C4iii5.3 (7)
O2ii—Gd—O3—C4159.5 (4)Gd—O3—C4—O4175.0 (4)
O1i—Gd—O3—C439.7 (4)Gd—O3—C4—C4iii4.3 (7)
O6iv—Gd—O3—C482.1 (4)Gdiv—O6—C5—O5178.4 (4)
O2—Gd—O3—C4135.3 (4)Gdiv—O6—C5—C5iv0.3 (7)
O1—Gd—O3—C481.5 (4)Gd—O5—C5—O6179.1 (4)
C1—Gd—O3—C4108.1 (4)Gd—O5—C5—C5iv2.1 (8)
O4iii—Gd—O5—C567.3 (4)
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z+1; (iv) −x, −y, −z; (v) −x+1, −y+1, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3ii0.84 (6)2.00 (5)2.799 (4)160
O7—H7B···O6vi0.83 (7)2.07 (7)2.888 (5)168
Symmetry codes: (ii) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.84 (6)2.00 (5)2.799 (4)160
O7—H7B···O6ii0.83 (7)2.07 (7)2.888 (5)168
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z.
Acknowledgements top

This work was supported by the Jiangxi Provincial Educational Foundation (GJJ09227).

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dimos, A., Tsaousis, D., Michaelides, A. & Skoulika, S. (2002). Chem. Mater. 14, 2616–2622.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Trombe, J. C. & Mohanu, A. (2004). Solid State Sci. 6, 1403–1419.