metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(4-benzo­yl­oxy-2-hy­dr­oxy­benzo­yl)-1-phenyl­ethenolato]di­ethano­lzinc(II)

aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and bXuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou 221009, Jiangsu, People's Republic of China
*Correspondence e-mail: bf_ruan@163.com, adler_20008@yahoo.com.cn

(Received 2 September 2010; accepted 8 September 2010; online 25 September 2010)

The mononuclear title complex, [Zn(C22H15O5)2(C2H5OH)2], contains a ZnII atom (site symmetry [\overline{1}]) surrounded by six O atoms of the keto groups of two substituted 1,3-diketonate ligands and of two ethanol mol­ecules, resulting in a distorted octa­hedral coordination environment. The mol­ecular configuration is stabilized by an intra­molecular hydrogen bond between the phenolic hy­droxy group and the adjacent keto group. The hy­droxy group acts likewise as an acceptor of an inter­molecular O—H⋯O hydrogen bond with the hy­droxy group of the ethanol mol­ecule as the donor. The hydrogen-bonding scheme leads to the formation of supra­molecular layers parallel to (010).

Related literature

For the role of zinc in enzymes and in bioinorganic chemistry, see: Bertini et al. (1994[Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mills Valley, CA, USA: University Science Books.]); Lipscomb & Strater (1996[Lipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375-2434.]); Vallee & Auld (1993[Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.]); Zhu et al. (2003[Zhu, H.-L., Meng, F.-J., Wang, Z.-D. & Yang, F. (2003). Z. Kristallogr. New Cryst. Struct. 219, 321-322.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C22H15O5)2(C2H6O)2]

  • Mr = 876.19

  • Triclinic, [P \overline 1]

  • a = 7.170 (5) Å

  • b = 9.399 (5) Å

  • c = 16.457 (5) Å

  • α = 106.590 (5)°

  • β = 95.596 (5)°

  • γ = 90.989 (5)°

  • V = 1056.6 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.882

  • 6185 measured reflections

  • 4255 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.02

  • 4255 reflections

  • 279 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O5i 2.002 (2)
Zn1—O4i 2.034 (2)
Zn1—O6i 2.203 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.74 2.470 (3) 147
O6—H10A⋯O3ii 0.86 2.04 2.824 (4) 151
Symmetry code: (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc, the second most abundant transition metal in biology, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase, where it is in a hard donor coordination environment of nitrogen and oxygen (Lipscomb & Strater, 1996; Bertini et al., 1994). Zinc has long been recognized as an important cofactor in biological molecules, either as a structural template in protein folding or as a Lewis acid catalyst that can readily adopt 4-, 5- or 6-coordination (Vallee & Auld, 1993). Studies of the structures and properties of the metal coordination sites in in zinc enzymes recently were in focus in the field of bioinorganic chemistry (Zhu et al., 2003). A couple of chemical systems have been developed to reproduce the zinc coordination core. On our continuation of the research in this field, the crystal structure of a mononuclear zinc(II) compound, (I), is reported here.

In the structure of (I), the ZnII atom is situated on an inversion center and adopts a slightly distorted octahedral coordination (Fig. 1). It is surrounded by six O atoms from the keto groups of two 1,3-diketonate ligands and by two ethanol molecules. The ZnII atom and the four O atoms from the diketone ligands form the equatorial plane with similar Zn—O bond lengths of 2.002 (2) and 2.034 (2) Å. The two ethanol O atoms are in the axial positions with considerably longer Zn—O bond lengths of 2.203 (3) Å (Table 1). The two trans-angles at the zinc(II) center are 180° by symmetry; all angles around Zn1 are close to 90°, ranging from 85.93 (11) to 94.07 (11)°. In the crystal structure, intramolecular and intermolecular O—H···O hydrogen bonding leads to a layered assembly parallel to (010) (Table 2; Fig. 2).

Related literature top

For the role of zinc in enzymes and in bioinorganic chemistry, see: Bertini et al. (1994); Lipscomb & Strater (1996); Vallee & Auld (1993); Zhu et al. (2003).

Experimental top

To a ethanol solution (15 ml) of 3-hydroxy-4-(3-oxo-3-phenylpropanoyl)phenyl benzoic acid (0.36 g, 0.001mol), anhydrous zinc acetate (0.092 g, 0.0005 mol) was added at room temperature. After addition, the reaction mixture was refluxed for 30 min with stirring and then was filtered. Single crystals of the title compound were obtained by slow evaporation of the filtrate.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93, 0.96(–CH3), 0.97 (–CH2), 0.86 (–OH) Å, Uiso(H) = 1.2 Ueq (C or –OH), 1.5 Ueq (–CH3), respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme of the title compound (I), showing 30% probability displacement ellipsoids. [Symmetry code: (A) -x, -y+1, -z+1.]
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonding interactions are indicated by dashed lines.
Bis[2-(4-benzoyloxy-2-hydroxybenzoyl)-1-phenylethenolato]diethanolzinc(II) top
Crystal data top
[Zn(C22H15O5)2(C2H6O)2]Z = 1
Mr = 876.19F(000) = 456
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.170 (5) ÅCell parameters from 2800 reflections
b = 9.399 (5) Åθ = 2.5–26.2°
c = 16.457 (5) ŵ = 0.65 mm1
α = 106.590 (5)°T = 298 K
β = 95.596 (5)°Block, colourless
γ = 90.989 (5)°0.30 × 0.20 × 0.20 mm
V = 1056.6 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4255 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.830, Tmax = 0.882k = 1111
6185 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.7172P]
where P = (Fo2 + 2Fc2)/3
4255 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.80 e Å3
14 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(C22H15O5)2(C2H6O)2]γ = 90.989 (5)°
Mr = 876.19V = 1056.6 (10) Å3
Triclinic, P1Z = 1
a = 7.170 (5) ÅMo Kα radiation
b = 9.399 (5) ŵ = 0.65 mm1
c = 16.457 (5) ÅT = 298 K
α = 106.590 (5)°0.30 × 0.20 × 0.20 mm
β = 95.596 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4255 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2898 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.882Rint = 0.017
6185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05014 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.80 e Å3
4255 reflectionsΔρmin = 0.49 e Å3
279 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0307 (7)0.0321 (6)0.1364 (3)0.0787 (14)
H11.10250.02870.17510.094*
C21.0779 (7)0.1805 (6)0.1042 (3)0.0828 (14)
H21.18140.22050.12140.099*
C30.9730 (6)0.2707 (5)0.0466 (3)0.0670 (11)
H3A1.00400.37200.02600.080*
C40.8221 (5)0.2120 (4)0.0193 (2)0.0465 (8)
C50.7732 (5)0.0614 (4)0.0524 (2)0.0572 (10)
H50.67080.02090.03470.069*
C60.8769 (7)0.0277 (5)0.1115 (3)0.0723 (12)
H60.84310.12830.13450.087*
C70.7210 (5)0.3140 (5)0.0470 (2)0.0522 (9)
C80.4913 (5)0.3187 (4)0.1426 (2)0.0533 (9)
C90.3464 (5)0.4014 (5)0.1234 (2)0.0625 (11)
H90.32870.41790.07010.075*
C100.2282 (5)0.4591 (4)0.1841 (2)0.0560 (10)
H100.12900.51370.17070.067*
C110.2513 (4)0.4390 (4)0.2655 (2)0.0417 (8)
C120.4069 (5)0.3582 (4)0.2832 (2)0.0462 (8)
C130.5241 (5)0.2980 (4)0.2214 (2)0.0539 (9)
H130.62470.24360.23360.065*
C140.1192 (4)0.4955 (4)0.3303 (2)0.0427 (8)
C150.0393 (5)0.5691 (4)0.3129 (2)0.0475 (8)
H150.05920.58040.25840.057*
C160.1725 (4)0.6280 (4)0.3689 (2)0.0409 (7)
C170.3308 (4)0.7128 (4)0.3413 (2)0.0425 (8)
C180.3685 (5)0.7198 (5)0.2587 (2)0.0648 (11)
H180.29690.66720.21690.078*
C190.5106 (6)0.8032 (6)0.2374 (3)0.0817 (14)
H190.53290.80710.18150.098*
C200.6184 (6)0.8797 (6)0.2966 (3)0.0816 (14)
H200.71080.93940.28240.098*
C210.5890 (7)0.8675 (6)0.3773 (3)0.0971 (18)
H210.66600.91580.41790.117*
C220.4472 (6)0.7849 (5)0.3996 (3)0.0749 (13)
H220.42990.77780.45510.090*
C230.1763 (9)0.8386 (7)0.5795 (5)0.132 (2)
H23A0.19460.84770.52360.159*
H23B0.28500.88790.61760.159*
C240.0214 (9)0.9216 (7)0.6062 (5)0.129 (2)
H24A0.08900.87800.56890.193*
H24B0.04261.02180.60460.193*
H24C0.00440.92170.66340.193*
O10.7452 (5)0.4469 (3)0.0716 (2)0.0838 (10)
O20.5993 (4)0.2389 (3)0.07885 (17)0.0653 (7)
O30.4461 (4)0.3341 (4)0.36033 (16)0.0670 (8)
H30.36720.37220.39170.100*
O40.1634 (3)0.4709 (3)0.40277 (15)0.0600 (7)
O50.1712 (3)0.6190 (3)0.44437 (14)0.0547 (7)
O60.1818 (4)0.6942 (3)0.5742 (2)0.0773 (9)
H10A0.27350.67290.60570.093*
Zn10.00000.50000.50000.0548 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (3)0.097 (4)0.057 (3)0.036 (3)0.033 (2)0.014 (3)
C20.083 (3)0.093 (4)0.089 (3)0.017 (3)0.055 (3)0.035 (3)
C30.068 (3)0.065 (3)0.077 (3)0.008 (2)0.033 (2)0.026 (2)
C40.0436 (19)0.058 (2)0.0402 (18)0.0108 (17)0.0117 (15)0.0155 (17)
C50.051 (2)0.063 (3)0.057 (2)0.0030 (19)0.0140 (18)0.0138 (19)
C60.078 (3)0.066 (3)0.063 (3)0.013 (2)0.014 (2)0.002 (2)
C70.045 (2)0.061 (3)0.053 (2)0.0063 (18)0.0159 (16)0.0166 (19)
C80.049 (2)0.057 (2)0.055 (2)0.0120 (18)0.0262 (17)0.0105 (18)
C90.061 (2)0.087 (3)0.049 (2)0.019 (2)0.0232 (18)0.027 (2)
C100.049 (2)0.076 (3)0.052 (2)0.0238 (19)0.0175 (16)0.0276 (19)
C110.0332 (17)0.050 (2)0.0443 (18)0.0100 (14)0.0108 (13)0.0142 (15)
C120.0352 (17)0.059 (2)0.0461 (19)0.0112 (16)0.0106 (14)0.0148 (17)
C130.0413 (19)0.062 (2)0.060 (2)0.0182 (17)0.0158 (16)0.0157 (19)
C140.0331 (17)0.056 (2)0.0419 (18)0.0105 (15)0.0102 (13)0.0158 (16)
C150.0419 (19)0.066 (2)0.0399 (18)0.0205 (17)0.0128 (14)0.0207 (17)
C160.0343 (17)0.051 (2)0.0398 (18)0.0085 (15)0.0068 (13)0.0150 (15)
C170.0362 (17)0.050 (2)0.0434 (18)0.0107 (15)0.0061 (14)0.0152 (15)
C180.058 (2)0.096 (3)0.053 (2)0.033 (2)0.0175 (18)0.037 (2)
C190.075 (3)0.121 (4)0.066 (3)0.046 (3)0.010 (2)0.050 (3)
C200.068 (3)0.105 (4)0.082 (3)0.049 (3)0.008 (2)0.041 (3)
C210.088 (3)0.139 (5)0.073 (3)0.078 (3)0.027 (3)0.034 (3)
C220.072 (3)0.111 (4)0.051 (2)0.054 (3)0.019 (2)0.030 (2)
C230.112 (4)0.086 (2)0.197 (5)0.020 (3)0.007 (4)0.044 (3)
C240.114 (4)0.110 (4)0.147 (4)0.040 (3)0.014 (3)0.009 (3)
O10.092 (2)0.0581 (19)0.098 (2)0.0027 (17)0.0523 (19)0.0045 (17)
O20.0656 (17)0.0624 (17)0.0721 (18)0.0123 (14)0.0423 (14)0.0140 (14)
O30.0497 (15)0.107 (2)0.0525 (15)0.0400 (15)0.0158 (12)0.0316 (16)
O40.0456 (14)0.100 (2)0.0461 (14)0.0360 (14)0.0165 (11)0.0350 (14)
O50.0496 (14)0.0804 (18)0.0429 (13)0.0331 (13)0.0165 (11)0.0264 (13)
O60.0566 (17)0.0793 (18)0.092 (2)0.0247 (15)0.0049 (15)0.0215 (17)
Zn10.0475 (4)0.0847 (5)0.0425 (3)0.0331 (3)0.0159 (3)0.0296 (3)
Geometric parameters (Å, º) top
C1—C21.366 (7)C15—H150.9300
C1—C61.378 (6)C16—O51.269 (4)
C1—H10.9300C16—C171.506 (4)
C2—C31.373 (6)C17—C221.372 (5)
C2—H20.9300C17—C181.379 (5)
C3—C41.375 (5)C18—C191.375 (5)
C3—H3A0.9300C18—H180.9300
C4—C51.389 (5)C19—C201.352 (6)
C4—C71.489 (5)C19—H190.9300
C5—C61.377 (5)C20—C211.363 (6)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.374 (5)
C7—O11.202 (4)C21—H210.9300
C7—O21.346 (4)C22—H220.9300
C8—C131.365 (5)C23—O61.337 (6)
C8—C91.374 (5)C23—C241.402 (6)
C8—O21.411 (4)C23—H23A0.9700
C9—C101.372 (5)C23—H23B0.9700
C9—H90.9300C24—H24A0.9600
C10—C111.400 (5)C24—H24B0.9600
C10—H100.9300C24—H24C0.9600
C11—C121.414 (4)O3—H30.8200
C11—C141.486 (4)O4—Zn12.034 (2)
C12—O31.356 (4)O5—Zn12.002 (2)
C12—C131.383 (5)O6—Zn12.203 (3)
C13—H130.9300O6—H10A0.8600
C14—O41.289 (4)Zn1—O5i2.002 (2)
C14—C151.389 (4)Zn1—O4i2.034 (2)
C15—C161.402 (4)Zn1—O6i2.203 (3)
C2—C1—C6120.2 (4)C18—C17—C16123.2 (3)
C2—C1—H1119.9C19—C18—C17120.9 (4)
C6—C1—H1119.9C19—C18—H18119.5
C1—C2—C3120.2 (4)C17—C18—H18119.5
C1—C2—H2119.9C20—C19—C18121.0 (4)
C3—C2—H2119.9C20—C19—H19119.5
C2—C3—C4120.4 (4)C18—C19—H19119.5
C2—C3—H3A119.8C19—C20—C21118.7 (4)
C4—C3—H3A119.8C19—C20—H20120.7
C3—C4—C5119.4 (3)C21—C20—H20120.7
C3—C4—C7117.8 (3)C20—C21—C22121.0 (4)
C5—C4—C7122.8 (3)C20—C21—H21119.5
C6—C5—C4119.8 (4)C22—C21—H21119.5
C6—C5—H5120.1C17—C22—C21120.9 (4)
C4—C5—H5120.1C17—C22—H22119.6
C5—C6—C1119.9 (4)C21—C22—H22119.6
C5—C6—H6120.0O6—C23—C24121.8 (6)
C1—C6—H6120.0O6—C23—H23A106.9
O1—C7—O2122.9 (3)C24—C23—H23A106.9
O1—C7—C4125.4 (3)O6—C23—H23B106.9
O2—C7—C4111.7 (3)C24—C23—H23B106.9
C13—C8—C9121.4 (3)H23A—C23—H23B106.7
C13—C8—O2117.3 (3)C23—C24—H24A109.5
C9—C8—O2121.0 (3)C23—C24—H24B109.5
C10—C9—C8118.9 (3)H24A—C24—H24B109.5
C10—C9—H9120.6C23—C24—H24C109.5
C8—C9—H9120.6H24A—C24—H24C109.5
C9—C10—C11122.5 (3)H24B—C24—H24C109.5
C9—C10—H10118.7C7—O2—C8119.2 (3)
C11—C10—H10118.7C12—O3—H3109.5
C10—C11—C12116.4 (3)C14—O4—Zn1126.7 (2)
C10—C11—C14122.9 (3)C16—O5—Zn1126.6 (2)
C12—C11—C14120.7 (3)C23—O6—Zn1132.2 (4)
O3—C12—C13117.2 (3)C23—O6—H10A114.0
O3—C12—C11121.8 (3)Zn1—O6—H10A113.8
C13—C12—C11121.0 (3)O5—Zn1—O5i180.00 (11)
C8—C13—C12119.7 (3)O5—Zn1—O489.37 (9)
C8—C13—H13120.1O5i—Zn1—O490.63 (9)
C12—C13—H13120.1O5—Zn1—O4i90.63 (9)
O4—C14—C15123.3 (3)O5i—Zn1—O4i89.37 (9)
O4—C14—C11115.0 (3)O4—Zn1—O4i179.999 (1)
C15—C14—C11121.7 (3)O5—Zn1—O694.07 (11)
C14—C15—C16126.8 (3)O5i—Zn1—O685.93 (11)
C14—C15—H15116.6O4—Zn1—O689.52 (12)
C16—C15—H15116.6O4i—Zn1—O690.48 (12)
O5—C16—C15125.3 (3)O5—Zn1—O6i85.93 (11)
O5—C16—C17114.8 (3)O5i—Zn1—O6i94.07 (11)
C15—C16—C17119.9 (3)O4—Zn1—O6i90.48 (12)
C22—C17—C18117.4 (3)O4i—Zn1—O6i89.52 (12)
C22—C17—C16119.4 (3)O6—Zn1—O6i180.0
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.742.470 (3)147
O6—H10A···O3ii0.862.042.824 (4)151
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C22H15O5)2(C2H6O)2]
Mr876.19
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.170 (5), 9.399 (5), 16.457 (5)
α, β, γ (°)106.590 (5), 95.596 (5), 90.989 (5)
V3)1056.6 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.830, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
6185, 4255, 2898
Rint0.017
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.02
No. of reflections4255
No. of parameters279
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O5i2.002 (2)Zn1—O6i2.203 (3)
Zn1—O4i2.034 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.742.470 (3)147.1
O6—H10A···O3ii0.862.042.824 (4)151.2
Symmetry code: (ii) x+1, y+1, z+1.
 

Acknowledgements

The work was financed by a grant (project 30772627) from the National Natural Science Foundation of China.

References

First citationBertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry. Mills Valley, CA, USA: University Science Books.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543–551.  CrossRef CAS Web of Science Google Scholar
First citationZhu, H.-L., Meng, F.-J., Wang, Z.-D. & Yang, F. (2003). Z. Kristallogr. New Cryst. Struct. 219, 321–322.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds