organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetyl­anilinium chloride

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 February 2011; accepted 8 February 2011; online 12 February 2011)

The cation of the title salt, C8H10NO+·Cl, is essentially planar [C—C—C—C torsion angle = 4.6 (2)°], the conformation being stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, centrosymmetric aggregates are formed via N—H⋯Cl hydrogen bonds. These dimeric aggregates are sustained in the crystal packing by a combination of C—H⋯Cl, C—H⋯O and C—O⋯π [O⋯ring centroid(benzene ring) = 3.1871 (13) and 3.3787 (13) Å] inter­actions.

Related literature

For background to structural studies of quinoline derivatives, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10NO+·Cl

  • Mr = 171.62

  • Monoclinic, P 21 /c

  • a = 4.8979 (1) Å

  • b = 15.8136 (4) Å

  • c = 10.8203 (3) Å

  • β = 102.569 (3)°

  • V = 817.98 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.920, Tmax = 1.000

  • 3262 measured reflections

  • 1436 independent reflections

  • 1256 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.07

  • 1436 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯Cl1 0.95 (2) 2.23 (2) 3.1463 (15) 163 (2)
N1—H2n⋯Cl1i 0.92 (2) 2.24 (2) 3.1366 (15) 165 (2)
N1—H3n⋯O1 0.87 (2) 1.95 (2) 2.6778 (18) 140 (2)
C5—H5⋯Cl1ii 0.95 2.73 3.5332 (18) 142
C6—H6⋯O1iii 0.95 2.59 3.2496 (19) 127
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title salt, (I), was obtained as an unexpected product during the attempted synthesis of a quinoline derivative, investigated as a part of an on-going programme into the synthesis and structural chemistry of quinolines of interest owing to their putative anti-malarial activity (Kaiser et al., 2009).

Ionic (I), Fig. 1, comprises a 2-acetylanilinium cation and a chloride anion. The cation is essentially planar with the acetyl group only slightly twisted out of the plane of the benzene ring to which it is connected, the C1–C2–C3–C4 torsion angle = 4.6 (2) °. The observed conformation is stabilized by an intramolecular N–H···O hydrogen bond, Table 1.

In the crystal packing, centrosymmetrically related molecules are connected into a supramolecular dimer via N–H···Cl hydrogen bonds, Table 1 and Fig. 2. The dimeric aggregates are arranged into layers in the ac plane via a combination of C–H···O, Table 1, and C—O···π contacts [C2–O1···Cg(C3—C8)i = 3.1871 (13) Å with the angle at O1 = 96.44 (10) ° for i: 1 + x, y, z; and C2–O1···Cg(C3—C8)ii = 3.3787 (13) Å with the angle at O1 = 98.36 (9) ° for ii: x, 1/2 - y, -1/2 + z]. The presence of C–H···Cl interactions, Table 1, contributes to the stability of the structure along the b axis, Fig. 3.

Related literature top

For background to structural studies of quinoline derivatives, see: Kaiser et al. (2009).

Experimental top

A mixture of 2-aminoacetophenone (0.01 M), acetophenone (0.01 M) and a catalytic amount of conc. HCl was heated on a water bath for 10 min. The resultant solid was filtered, dried and purified by column chromatography using a 1:5 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I) which yielded colourless needles. M.pt. 421–423 K. Yield: 66%. The X-ray study showed that the original 2-aminoacetophenone had been protonated and crystallized as a chloride salt.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The constituent ions of salt (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular dimer in (I) mediated by N–H···Cl hydrogen bonding, shown as orange dashed lines.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the a axis in (I). The N–H···Cl hydrogen bonding, and C–H···Cl, C–H···O and C–O···π contacts are shown as orange, blue, pink, and purple dashed lines, respectively.
2-Acetylanilinium chloride top
Crystal data top
C8H10NO+·ClF(000) = 360
Mr = 171.62Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2016 reflections
a = 4.8979 (1) Åθ = 2.3–29.1°
b = 15.8136 (4) ŵ = 0.41 mm1
c = 10.8203 (3) ÅT = 100 K
β = 102.569 (3)°Pris,, colourless
V = 817.98 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
1436 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1256 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.4041 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1817
Tmin = 0.920, Tmax = 1.000l = 1012
3262 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
1436 reflections(Δ/σ)max = 0.001
113 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H10NO+·ClV = 817.98 (3) Å3
Mr = 171.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8979 (1) ŵ = 0.41 mm1
b = 15.8136 (4) ÅT = 100 K
c = 10.8203 (3) Å0.30 × 0.25 × 0.20 mm
β = 102.569 (3)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
1436 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1256 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 1.000Rint = 0.019
3262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
1436 reflectionsΔρmin = 0.27 e Å3
113 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10927 (9)0.47141 (2)0.83017 (4)0.02647 (17)
O10.8706 (2)0.23737 (7)0.91735 (11)0.0277 (3)
N10.6529 (3)0.38178 (9)0.98223 (14)0.0210 (3)
H1N0.508 (4)0.4081 (12)0.9220 (19)0.036 (5)*
H2N0.753 (4)0.4233 (13)1.0322 (19)0.033 (5)*
H3N0.759 (4)0.3532 (12)0.9418 (19)0.034 (5)*
C10.7572 (5)0.10071 (11)0.97971 (19)0.0377 (5)
H1A0.86650.08260.91860.057*
H1B0.56740.07760.95520.057*
H1C0.84660.08001.06420.057*
C20.7435 (3)0.19573 (10)0.98154 (15)0.0233 (4)
C30.5701 (3)0.23753 (10)1.06204 (15)0.0197 (4)
C40.4392 (4)0.18953 (10)1.14121 (16)0.0238 (4)
H40.46390.12991.14440.029*
C50.2751 (4)0.22678 (11)1.21474 (16)0.0253 (4)
H50.18750.19281.26730.030*
C60.2381 (3)0.31345 (10)1.21206 (16)0.0240 (4)
H60.12490.33911.26260.029*
C70.3663 (3)0.36268 (10)1.13559 (15)0.0219 (4)
H70.34230.42231.13370.026*
C80.5289 (3)0.32504 (10)1.06211 (15)0.0185 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0285 (3)0.0215 (3)0.0298 (3)0.00177 (17)0.00704 (19)0.00224 (17)
O10.0280 (7)0.0299 (7)0.0275 (7)0.0043 (5)0.0113 (6)0.0002 (5)
N10.0222 (8)0.0193 (8)0.0235 (8)0.0005 (7)0.0091 (7)0.0013 (7)
C10.0527 (13)0.0241 (10)0.0401 (12)0.0081 (9)0.0182 (10)0.0017 (9)
C20.0230 (9)0.0236 (9)0.0212 (9)0.0040 (7)0.0003 (7)0.0008 (7)
C30.0173 (8)0.0210 (9)0.0199 (8)0.0010 (7)0.0016 (7)0.0006 (7)
C40.0251 (9)0.0188 (9)0.0262 (9)0.0001 (7)0.0027 (7)0.0048 (7)
C50.0226 (9)0.0300 (10)0.0238 (9)0.0034 (8)0.0060 (7)0.0067 (8)
C60.0196 (9)0.0304 (10)0.0232 (9)0.0015 (7)0.0073 (7)0.0005 (8)
C70.0205 (9)0.0191 (9)0.0264 (9)0.0015 (7)0.0058 (7)0.0005 (7)
C80.0158 (8)0.0205 (8)0.0190 (8)0.0017 (6)0.0031 (7)0.0017 (7)
Geometric parameters (Å, º) top
O1—C21.221 (2)C3—C81.399 (2)
N1—C81.466 (2)C3—C41.400 (2)
N1—H1N0.95 (2)C4—C51.380 (2)
N1—H2N0.92 (2)C4—H40.9500
N1—H3N0.87 (2)C5—C61.382 (2)
C1—C21.504 (2)C5—H50.9500
C1—H1A0.9800C6—C71.383 (2)
C1—H1B0.9800C6—H60.9500
C1—H1C0.9800C7—C81.377 (2)
C2—C31.496 (2)C7—H70.9500
C8—N1—H1N109.3 (12)C4—C3—C2120.68 (15)
C8—N1—H2N108.9 (12)C5—C4—C3121.54 (15)
H1N—N1—H2N108.2 (16)C5—C4—H4119.2
C8—N1—H3N110.2 (13)C3—C4—H4119.2
H1N—N1—H3N108.7 (18)C4—C5—C6120.10 (16)
H2N—N1—H3N111.5 (18)C4—C5—H5120.0
C2—C1—H1A109.5C6—C5—H5120.0
C2—C1—H1B109.5C5—C6—C7119.76 (16)
H1A—C1—H1B109.5C5—C6—H6120.1
C2—C1—H1C109.5C7—C6—H6120.1
H1A—C1—H1C109.5C8—C7—C6119.82 (15)
H1B—C1—H1C109.5C8—C7—H7120.1
O1—C2—C3121.12 (15)C6—C7—H7120.1
O1—C2—C1120.10 (16)C7—C8—C3121.98 (15)
C3—C2—C1118.77 (15)C7—C8—N1116.21 (14)
C8—C3—C4116.80 (15)C3—C8—N1121.80 (14)
C8—C3—C2122.52 (14)
O1—C2—C3—C84.3 (2)C5—C6—C7—C80.3 (2)
C1—C2—C3—C8175.12 (16)C6—C7—C8—C30.1 (2)
O1—C2—C3—C4176.05 (15)C6—C7—C8—N1178.95 (14)
C1—C2—C3—C44.6 (2)C4—C3—C8—C70.4 (2)
C8—C3—C4—C50.7 (2)C2—C3—C8—C7179.28 (15)
C2—C3—C4—C5179.04 (15)C4—C3—C8—N1179.37 (15)
C3—C4—C5—C60.4 (3)C2—C3—C8—N10.3 (2)
C4—C5—C6—C70.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl10.95 (2)2.23 (2)3.1463 (15)163 (2)
N1—H2n···Cl1i0.92 (2)2.24 (2)3.1366 (15)165 (2)
N1—H3n···O10.87 (2)1.95 (2)2.6778 (18)140 (2)
C5—H5···Cl1ii0.952.733.5332 (18)142
C6—H6···O1iii0.952.593.2496 (19)127
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10NO+·Cl
Mr171.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.8979 (1), 15.8136 (4), 10.8203 (3)
β (°) 102.569 (3)
V3)817.98 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.920, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3262, 1436, 1256
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections1436
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···Cl10.95 (2)2.23 (2)3.1463 (15)162.9 (17)
N1—H2n···Cl1i0.92 (2)2.24 (2)3.1366 (15)165.0 (17)
N1—H3n···O10.87 (2)1.946 (19)2.6778 (18)140.3 (18)
C5—H5···Cl1ii0.952.733.5332 (18)142
C6—H6···O1iii0.952.593.2496 (19)127
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds