organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-benzoyl-4-hy­dr­oxy-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 21 January 2011; accepted 25 January 2011; online 2 February 2011)

In the title compound, C27H25NO4, the tetra­hydro­pyridine ring adopts a half-chair conformation. The three phenyl rings form dihedral angles of 66.33 (7), 87.36 (8) and 36.90 (7)° with the least-squares plane through the tetra­hydro­pyridine ring. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) motif.

Related literature

For related structures, see: Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]); Nithya et al. (2009[Nithya, P., Hathwar, V. R., Kone, S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o1692-o1693.]); Aravindhan et al. (2009[Aravindhan, S., Ponnuswamy, S., Umamaheswari, J., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1975.]); Aridoss et al. (2009[Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1708-o1709.], 2010[Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o1982.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H25NO4

  • Mr = 427.48

  • Triclinic, [P \overline 1]

  • a = 8.2784 (7) Å

  • b = 10.6116 (9) Å

  • c = 12.7572 (11) Å

  • α = 85.681 (4)°

  • β = 89.963 (4)°

  • γ = 82.508 (5)°

  • V = 1107.91 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 20295 measured reflections

  • 5526 independent reflections

  • 4179 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.04

  • 5526 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.85 2.570 (2) 146

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Owing to the relevance of piperidine-containing bioactive compounds, the development of new piperidine based derivatives continues to be a subject of considerable interest. The pharmacological effects of potential new drugs depend entirely on the stereochemistry and ring conformations of the compounds and hence the crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.344 (1) Å, q3 = -0.288 (1) Å; QT = 0.4485 Å and θ = 130.02 (2)°, ϕ2 = 205.6 (2)°, respectively. The three phenyl rings are twisted away from the best plane of the tetrahydropyridine ring by 66.33 (7), 87.36 (8) and 36.90 (7)°, respectively. The sum of the bond angles around the atom N1 [360.09 (10)°] of the tetrahydropyridine ring in the molecule is in accordance with sp2 hybridization. The ethyl acetate group shows an extended conformation [C18—O3—C19—C20 = 90.67 (2)°]. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif.

Related literature top

For related structures, see: Subha Nandhini et al. (2003); Nithya et al. (2009); Aravindhan et al. (2009); Aridoss et al. (2009, 2010). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a mixture of 3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) and triethylamine (1.5 equiv.) in benzene, freshly distilled benzoyl chloride in benzene was added dropwise and stirred well at room temperature until completion. The crude mass obtained by the base work upon purification and recrystallization in distilled ethanol gave fine white crystals suitable for X-ray study.

Refinement top

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the a axis. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
Ethyl 1-benzoyl-4-hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C27H25NO4Z = 2
Mr = 427.48F(000) = 452
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2784 (7) ÅCell parameters from 1225 reflections
b = 10.6116 (9) Åθ = 1.6–28.4°
c = 12.7572 (11) ŵ = 0.09 mm1
α = 85.681 (4)°T = 293 K
β = 89.963 (4)°Block, white
γ = 82.508 (5)°0.25 × 0.23 × 0.20 mm
V = 1107.91 (16) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5526 independent reflections
Radiation source: fine-focus sealed tube4179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.979, Tmax = 0.983k = 1414
20295 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2116P]
where P = (Fo2 + 2Fc2)/3
5526 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C27H25NO4γ = 82.508 (5)°
Mr = 427.48V = 1107.91 (16) Å3
Triclinic, P1Z = 2
a = 8.2784 (7) ÅMo Kα radiation
b = 10.6116 (9) ŵ = 0.09 mm1
c = 12.7572 (11) ÅT = 293 K
α = 85.681 (4)°0.25 × 0.23 × 0.20 mm
β = 89.963 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5526 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4179 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.024
20295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
5526 reflectionsΔρmin = 0.15 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35152 (15)0.26735 (12)0.41384 (9)0.0431 (3)
H10.32760.24160.48700.052*
C20.44264 (18)0.38303 (14)0.41541 (11)0.0551 (3)
H2A0.40250.43260.47310.066*
H2B0.55730.35390.42850.066*
C30.42551 (17)0.46663 (12)0.31645 (11)0.0483 (3)
C40.31584 (15)0.45704 (11)0.23982 (9)0.0421 (3)
C50.19897 (14)0.35828 (11)0.24886 (9)0.0382 (2)
H50.09060.40480.23280.046*
C60.22569 (15)0.25498 (11)0.17071 (9)0.0410 (3)
C70.34280 (18)0.25430 (15)0.09352 (12)0.0585 (4)
H70.41420.31520.09110.070*
C80.3555 (2)0.16428 (18)0.01975 (15)0.0758 (5)
H80.43400.16600.03240.091*
C90.2530 (2)0.07296 (16)0.02343 (14)0.0739 (5)
H90.26260.01170.02550.089*
C100.1359 (2)0.07199 (15)0.09956 (12)0.0663 (4)
H100.06570.01020.10200.080*
C110.12177 (19)0.16256 (13)0.17261 (11)0.0528 (3)
H110.04160.16140.22360.063*
C120.44595 (15)0.15211 (13)0.36780 (10)0.0447 (3)
C130.59156 (19)0.15546 (17)0.31517 (14)0.0692 (4)
H130.63670.23130.30620.083*
C140.6700 (2)0.0462 (2)0.27598 (19)0.0929 (7)
H140.76760.04940.24030.112*
C150.6072 (2)0.0660 (2)0.28857 (17)0.0873 (6)
H150.66020.13850.26060.105*
C160.4653 (2)0.07137 (17)0.34282 (16)0.0748 (5)
H160.42260.14820.35310.090*
C170.38547 (18)0.03709 (14)0.38216 (12)0.0573 (4)
H170.28920.03260.41900.069*
C180.29783 (17)0.55330 (12)0.15177 (10)0.0477 (3)
C190.1465 (2)0.63209 (17)0.00422 (12)0.0685 (4)
H19A0.18800.71120.00780.082*
H19B0.03110.65140.02030.082*
C200.2327 (2)0.5731 (2)0.09393 (13)0.0832 (6)
H20A0.34790.55990.07990.125*
H20B0.21080.62860.15670.125*
H20C0.19540.49270.10330.125*
C210.04496 (15)0.30444 (11)0.40464 (10)0.0416 (3)
C220.03654 (15)0.27946 (12)0.52150 (10)0.0433 (3)
C230.04315 (18)0.18014 (14)0.56215 (11)0.0549 (3)
H230.08360.12650.51720.066*
C240.0628 (2)0.16050 (17)0.66984 (12)0.0655 (4)
H240.11420.09250.69710.079*
C250.0065 (2)0.24121 (17)0.73612 (12)0.0643 (4)
H250.02030.22800.80830.077*
C260.0700 (2)0.34139 (15)0.69651 (12)0.0620 (4)
H260.10680.39650.74170.074*
C270.09253 (18)0.36049 (13)0.58943 (11)0.0531 (3)
H270.14540.42800.56280.064*
N10.19330 (12)0.30648 (9)0.35920 (7)0.0388 (2)
O10.52511 (14)0.55669 (10)0.31367 (9)0.0663 (3)
H1A0.50890.60280.25920.099*
O20.38767 (14)0.63583 (10)0.13602 (9)0.0687 (3)
O30.17091 (12)0.54509 (9)0.08975 (7)0.0530 (2)
O40.08244 (11)0.32515 (10)0.35338 (8)0.0563 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (6)0.0496 (7)0.0359 (6)0.0114 (5)0.0075 (5)0.0002 (5)
C20.0608 (8)0.0598 (8)0.0487 (7)0.0218 (7)0.0139 (6)0.0056 (6)
C30.0527 (7)0.0446 (7)0.0511 (7)0.0167 (6)0.0007 (6)0.0096 (5)
C40.0474 (7)0.0384 (6)0.0417 (6)0.0098 (5)0.0013 (5)0.0042 (5)
C50.0418 (6)0.0381 (6)0.0350 (6)0.0079 (5)0.0044 (5)0.0006 (4)
C60.0457 (6)0.0398 (6)0.0372 (6)0.0047 (5)0.0091 (5)0.0016 (5)
C70.0539 (8)0.0606 (9)0.0643 (9)0.0121 (7)0.0074 (7)0.0191 (7)
C80.0766 (11)0.0824 (12)0.0721 (11)0.0086 (9)0.0160 (9)0.0333 (9)
C90.0989 (13)0.0620 (10)0.0636 (10)0.0070 (9)0.0032 (9)0.0282 (8)
C100.0967 (12)0.0514 (8)0.0556 (9)0.0254 (8)0.0139 (8)0.0085 (7)
C110.0701 (9)0.0494 (7)0.0417 (7)0.0193 (6)0.0052 (6)0.0026 (5)
C120.0398 (6)0.0529 (7)0.0400 (6)0.0036 (5)0.0081 (5)0.0025 (5)
C130.0483 (8)0.0712 (10)0.0847 (12)0.0031 (7)0.0098 (8)0.0087 (9)
C140.0584 (10)0.0983 (16)0.1135 (17)0.0163 (10)0.0255 (10)0.0017 (13)
C150.0693 (12)0.0831 (13)0.1018 (15)0.0267 (10)0.0038 (10)0.0202 (11)
C160.0639 (10)0.0571 (9)0.1021 (14)0.0026 (8)0.0138 (9)0.0147 (9)
C170.0485 (8)0.0558 (8)0.0685 (9)0.0080 (6)0.0002 (7)0.0080 (7)
C180.0531 (7)0.0427 (7)0.0476 (7)0.0077 (6)0.0080 (6)0.0022 (5)
C190.0756 (10)0.0728 (10)0.0521 (8)0.0055 (8)0.0031 (7)0.0214 (7)
C200.0807 (12)0.1220 (16)0.0467 (9)0.0197 (11)0.0016 (8)0.0062 (9)
C210.0462 (7)0.0372 (6)0.0424 (6)0.0089 (5)0.0010 (5)0.0027 (5)
C220.0443 (6)0.0419 (6)0.0430 (6)0.0025 (5)0.0029 (5)0.0030 (5)
C230.0579 (8)0.0568 (8)0.0518 (8)0.0168 (6)0.0020 (6)0.0002 (6)
C240.0652 (9)0.0736 (10)0.0566 (9)0.0149 (8)0.0087 (7)0.0130 (8)
C250.0656 (9)0.0780 (11)0.0440 (8)0.0082 (8)0.0107 (7)0.0014 (7)
C260.0753 (10)0.0596 (9)0.0489 (8)0.0073 (7)0.0004 (7)0.0188 (7)
C270.0654 (9)0.0428 (7)0.0514 (8)0.0055 (6)0.0025 (6)0.0085 (6)
N10.0415 (5)0.0405 (5)0.0347 (5)0.0073 (4)0.0034 (4)0.0013 (4)
O10.0744 (7)0.0620 (6)0.0700 (7)0.0369 (5)0.0074 (5)0.0056 (5)
O20.0769 (7)0.0583 (6)0.0731 (7)0.0273 (5)0.0042 (6)0.0116 (5)
O30.0599 (6)0.0546 (5)0.0427 (5)0.0073 (4)0.0006 (4)0.0081 (4)
O40.0445 (5)0.0718 (7)0.0530 (6)0.0128 (5)0.0049 (4)0.0030 (5)
Geometric parameters (Å, º) top
C1—N11.4798 (15)C14—H140.9300
C1—C121.5197 (19)C15—C161.369 (3)
C1—C21.5237 (18)C15—H150.9300
C1—H10.9800C16—C171.379 (2)
C2—C31.4831 (19)C16—H160.9300
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—O21.2263 (16)
C3—O11.3397 (15)C18—O31.3315 (17)
C3—C41.3531 (18)C19—O31.4545 (16)
C4—C181.4543 (18)C19—C201.484 (2)
C4—C51.5145 (16)C19—H19A0.9700
C5—N11.4751 (14)C19—H19B0.9700
C5—C61.5315 (16)C20—H20A0.9600
C5—H50.9800C20—H20B0.9600
C6—C71.3812 (19)C20—H20C0.9600
C6—C111.3852 (18)C21—O41.2276 (15)
C7—C81.385 (2)C21—N11.3597 (16)
C7—H70.9300C21—C221.4976 (17)
C8—C91.367 (3)C22—C231.3833 (19)
C8—H80.9300C22—C271.3863 (18)
C9—C101.372 (3)C23—C241.387 (2)
C9—H90.9300C23—H230.9300
C10—C111.383 (2)C24—C251.371 (2)
C10—H100.9300C24—H240.9300
C11—H110.9300C25—C261.372 (2)
C12—C171.3782 (19)C25—H250.9300
C12—C131.383 (2)C26—C271.382 (2)
C13—C141.381 (3)C26—H260.9300
C13—H130.9300C27—H270.9300
C14—C151.359 (3)O1—H1A0.8200
N1—C1—C12111.53 (9)C14—C15—C16119.40 (17)
N1—C1—C2108.76 (10)C14—C15—H15120.3
C12—C1—C2114.90 (11)C16—C15—H15120.3
N1—C1—H1107.1C15—C16—C17120.01 (18)
C12—C1—H1107.1C15—C16—H16120.0
C2—C1—H1107.1C17—C16—H16120.0
C3—C2—C1113.62 (10)C12—C17—C16121.14 (15)
C3—C2—H2A108.8C12—C17—H17119.4
C1—C2—H2A108.8C16—C17—H17119.4
C3—C2—H2B108.8O2—C18—O3122.55 (12)
C1—C2—H2B108.8O2—C18—C4124.16 (13)
H2A—C2—H2B107.7O3—C18—C4113.28 (11)
O1—C3—C4123.70 (12)O3—C19—C20109.75 (14)
O1—C3—C2112.47 (11)O3—C19—H19A109.7
C4—C3—C2123.74 (11)C20—C19—H19A109.7
C3—C4—C18118.69 (11)O3—C19—H19B109.7
C3—C4—C5122.01 (11)C20—C19—H19B109.7
C18—C4—C5118.95 (11)H19A—C19—H19B108.2
N1—C5—C4109.42 (9)C19—C20—H20A109.5
N1—C5—C6113.34 (9)C19—C20—H20B109.5
C4—C5—C6115.47 (10)H20A—C20—H20B109.5
N1—C5—H5105.9C19—C20—H20C109.5
C4—C5—H5105.9H20A—C20—H20C109.5
C6—C5—H5105.9H20B—C20—H20C109.5
C7—C6—C11118.09 (12)O4—C21—N1122.22 (11)
C7—C6—C5122.82 (11)O4—C21—C22118.89 (11)
C11—C6—C5118.96 (11)N1—C21—C22118.87 (11)
C6—C7—C8121.02 (14)C23—C22—C27119.20 (13)
C6—C7—H7119.5C23—C22—C21118.91 (12)
C8—C7—H7119.5C27—C22—C21121.59 (12)
C9—C8—C7120.12 (16)C22—C23—C24120.09 (14)
C9—C8—H8119.9C22—C23—H23120.0
C7—C8—H8119.9C24—C23—H23120.0
C8—C9—C10119.73 (14)C25—C24—C23120.07 (15)
C8—C9—H9120.1C25—C24—H24120.0
C10—C9—H9120.1C23—C24—H24120.0
C9—C10—C11120.26 (15)C24—C25—C26120.31 (14)
C9—C10—H10119.9C24—C25—H25119.8
C11—C10—H10119.9C26—C25—H25119.8
C10—C11—C6120.77 (14)C25—C26—C27120.03 (14)
C10—C11—H11119.6C25—C26—H26120.0
C6—C11—H11119.6C27—C26—H26120.0
C17—C12—C13118.23 (14)C26—C27—C22120.27 (14)
C17—C12—C1118.10 (12)C26—C27—H27119.9
C13—C12—C1123.64 (13)C22—C27—H27119.9
C14—C13—C12120.02 (17)C21—N1—C5118.15 (10)
C14—C13—H13120.0C21—N1—C1124.93 (10)
C12—C13—H13120.0C5—N1—C1116.82 (9)
C15—C14—C13121.17 (18)C3—O1—H1A109.5
C15—C14—H14119.4C18—O3—C19118.01 (12)
C13—C14—H14119.4
N1—C1—C2—C339.33 (16)C1—C12—C17—C16179.77 (14)
C12—C1—C2—C386.47 (15)C15—C16—C17—C120.1 (3)
C1—C2—C3—O1170.79 (12)C3—C4—C18—O28.2 (2)
C1—C2—C3—C412.3 (2)C5—C4—C18—O2178.52 (12)
O1—C3—C4—C183.4 (2)C3—C4—C18—O3170.63 (12)
C2—C3—C4—C18173.15 (13)C5—C4—C18—O32.68 (17)
O1—C3—C4—C5176.51 (12)O4—C21—C22—C2357.04 (17)
C2—C3—C4—C50.1 (2)N1—C21—C22—C23124.55 (13)
C3—C4—C5—N115.95 (16)O4—C21—C22—C27116.66 (15)
C18—C4—C5—N1157.13 (11)N1—C21—C22—C2761.75 (17)
C3—C4—C5—C6113.35 (13)C27—C22—C23—C241.6 (2)
C18—C4—C5—C673.57 (14)C21—C22—C23—C24175.44 (13)
N1—C5—C6—C7130.38 (13)C22—C23—C24—C251.5 (2)
C4—C5—C6—C73.03 (17)C23—C24—C25—C260.3 (2)
N1—C5—C6—C1153.88 (14)C24—C25—C26—C270.8 (2)
C4—C5—C6—C11178.77 (11)C25—C26—C27—C220.6 (2)
C11—C6—C7—C80.4 (2)C23—C22—C27—C260.5 (2)
C5—C6—C7—C8175.42 (14)C21—C22—C27—C26174.22 (13)
C6—C7—C8—C91.0 (3)O4—C21—N1—C511.51 (17)
C7—C8—C9—C101.0 (3)C22—C21—N1—C5166.85 (10)
C8—C9—C10—C110.3 (3)O4—C21—N1—C1172.21 (11)
C9—C10—C11—C60.4 (2)C22—C21—N1—C19.43 (17)
C7—C6—C11—C100.3 (2)C4—C5—N1—C21129.05 (11)
C5—C6—C11—C10176.29 (13)C6—C5—N1—C21100.50 (12)
N1—C1—C12—C1768.07 (15)C4—C5—N1—C147.53 (13)
C2—C1—C12—C17167.57 (11)C6—C5—N1—C182.92 (12)
N1—C1—C12—C13113.98 (14)C12—C1—N1—C21116.28 (12)
C2—C1—C12—C1310.38 (18)C2—C1—N1—C21115.98 (13)
C17—C12—C13—C141.8 (2)C12—C1—N1—C567.39 (13)
C1—C12—C13—C14179.77 (16)C2—C1—N1—C560.35 (13)
C12—C13—C14—C150.4 (3)O2—C18—O3—C194.6 (2)
C13—C14—C15—C161.3 (3)C4—C18—O3—C19176.56 (12)
C14—C15—C16—C171.4 (3)C20—C19—O3—C1890.67 (17)
C13—C12—C17—C161.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.852.570 (2)146

Experimental details

Crystal data
Chemical formulaC27H25NO4
Mr427.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2784 (7), 10.6116 (9), 12.7572 (11)
α, β, γ (°)85.681 (4), 89.963 (4), 82.508 (5)
V3)1107.91 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20295, 5526, 4179
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.04
No. of reflections5526
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.852.570 (2)146
 

Acknowledgements

This research was supported by the Industrial Technology Development Program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

References

First citationAravindhan, S., Ponnuswamy, S., Umamaheswari, J., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009). Acta Cryst. E65, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010). Acta Cryst. E66, o1982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNithya, P., Hathwar, V. R., Kone, S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o1692–o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds