organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phen­yl(1-phenyl­sulfonyl-1H-indol-2-yl)methanone

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 13 January 2011; accepted 5 March 2011; online 12 March 2011)

The asymmetric unit of the title compound, C21H15NO3S, contains two crystallographically independent mol­ecules. As a result of the electron-withdrawing character of the phenyl­sulfonyl groups, the N—Csp2 bond lengths are slightly longer than the anti­cipated value of approximately 1.35 Å for N atoms with planar configurations. Both unique S atoms have a distorted tetra­hedral configuration. In each mol­ecule, the indole ring system is essentially planar (r.m.s. deviations for all non-H atoms of 0.020 and 0.023 Å). In one mol­ecule, the indole ring system makes dihedral angles of 65.7 (8) and 73.4 (8)°, respectively, with the benzene and phenyl rings [62.2 (7) and 72.1 (7)°, respectively, in the other mol­ecule].

Related literature

For the biological activity of compounds containing an indole ring system, see: Ma et al. (2001[Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542.]); Zhou et al. (2006[Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251-259.]); Zhao et al. (2002[Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687-690.]); Williams et al. (1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291-1294.]). For related structures, see: Chakkaravarthi et al. (2010[Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.]); Kavitha et al. (2010[Kavitha, T., Thenmozhi, M., Dhayalan, V., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1071.]). For a discussion of the geometry at the N atom, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15NO3S

  • Mr = 361.40

  • Triclinic, [P \overline 1]

  • a = 9.3291 (6) Å

  • b = 11.1498 (7) Å

  • c = 17.8134 (10) Å

  • α = 89.433 (3)°

  • β = 81.623 (2)°

  • γ = 71.993 (3)°

  • V = 1742.13 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 30464 measured reflections

  • 8730 independent reflections

  • 6363 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.138

  • S = 0.99

  • 8730 reflections

  • 470 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole ring system is present in a number of natural products, many of which are found to possess anticancer, antimalarial and antihypertensive activities (Ma et al., 2001; Zhou et al., 2006; Zhao et al., 2002). In addition, phenylsulfonyl indole compounds inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993). Sulfonamide derivates are well known drugs and are used to control diseases caused by bacterial infections. Against this background and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other phenylsulfonylindoles (Chakkaravarthi et al., 2010). In both the molecules, the indole ring systems are essentially planar, with r.m.s. deviation of 0.028 and 0.034Å for atoms C6 and C6'. In both the molecules, the sum of bond angles around N1[359.1 (11)°] of the pyrrole ring is in accordance with sp3 hybridization (Beddoes et al., 1986). In molecule A, indole ring system make the dihedral angles of 65.7 (8) and 73.4 (8)°, respectively, with the benzene and phenyl rings and also in molecule B, indole ring system make the dihedral angles of 62.2 (7) and 72.1 (7)°, respectively, with the benzene and phenyl rings.

The S–O, S–C, and S–N distances are 1.421 (1), 1.755 (2) and 1.673 (1) Å, respectively and these values are comparable as observed in similar structures (Chakkaravarthi et al., 2010). As a result of the electron-withdrawing character of the phenylsulfonyl groups, the N–Csp2 bond lengths, viz. N1–C1 [1.414 (2) Å], N1'–C1' [1.415 (2) Å], N1–C8 [1.416 (2) Å] and N1'–C8' [1.417 (2) Å], are longer than the mean value of 1.355 (1)Å reported for N atoms with planar configurations (Allen et al., 1987). In both the molecules,the S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations being seen for the O–S–O [O1–S1–O2 119.5 (9)° & O1'–S1'–O2' 119.7 (8)°] and O–S–N angles [O1–S1–N1 105.1 (7)° & O1'–S1'–N1' 104.8 (7)°]. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Kavitha et al., 2010).

Related literature top

For the biological activity of compounds containing an indole ring system, see: Ma et al. (2001); Zhou et al. (2006); Zhao et al. (2002); Williams et al. (1993). For related structures, see: Chakkaravarthi et al. (2010); Kavitha et al. (2010). For a discussion of the geometry at the N atom, see: Beddoes et al. (1986). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of N-(2-Formylphenyl)benzenesulfonamide (0.5 g, 1.91 mmol) in dry CH3CN (20 ml), K2CO3 (0.8 g, 5.79 mmol), phenacylbromides (0.45 g, 2.26 mmol) were added. The reaction mixture was stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml), extracted with chloroform (3 x 10 ml) and dried (Na2SO4). Removal of solvent followed by the residue was dissolved in CH3CN (20 ml), Conc.HCl (3 ml) was added. The reaction mixture was then refluxed for 2 h. It was then poured over ice-water (50 ml), extracted with CHCl3 (3 x 10 ml) and dried (Na2SO4). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two crystallographically unique molecules. Displacement ellipsoids are drawn at the 30% probability level.
Phenyl(1-phenylsulfonyl-1H-indol-2-yl)methanone top
Crystal data top
C21H15NO3SZ = 4
Mr = 361.40F(000) = 752
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3291 (6) ÅCell parameters from 8730 reflections
b = 11.1498 (7) Åθ = 1.2–28.7°
c = 17.8134 (10) ŵ = 0.21 mm1
α = 89.433 (3)°T = 293 K
β = 81.623 (2)°Block, white
γ = 71.993 (3)°0.25 × 0.22 × 0.19 mm
V = 1742.13 (18) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8730 independent reflections
Radiation source: fine-focus sealed tube6363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 28.7°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.981, Tmax = 0.985k = 1414
30464 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.082P)2 + 0.1847P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8730 reflectionsΔρmax = 0.27 e Å3
470 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.085 (3)
Crystal data top
C21H15NO3Sγ = 71.993 (3)°
Mr = 361.40V = 1742.13 (18) Å3
Triclinic, P1Z = 4
a = 9.3291 (6) ÅMo Kα radiation
b = 11.1498 (7) ŵ = 0.21 mm1
c = 17.8134 (10) ÅT = 293 K
α = 89.433 (3)°0.25 × 0.22 × 0.19 mm
β = 81.623 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6363 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.041
30464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
8730 reflectionsΔρmin = 0.33 e Å3
470 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.12210 (18)0.80297 (15)0.33999 (9)0.0466 (4)
C1'1.04606 (17)0.31674 (14)0.15061 (8)0.0427 (3)
C2'1.1137 (2)0.19223 (16)0.16963 (10)0.0549 (4)
H2'1.06340.13210.16940.066*
C21.1947 (2)0.67756 (17)0.31637 (11)0.0593 (4)
H21.14060.62010.31600.071*
C31.3500 (2)0.6420 (2)0.29356 (11)0.0679 (5)
H31.40150.55850.27790.082*
C3'1.2583 (2)0.16248 (19)0.18871 (10)0.0620 (5)
H3'1.30610.08020.20160.074*
C4'1.3354 (2)0.25122 (19)0.18944 (10)0.0630 (5)
H4'1.43330.22710.20220.076*
C41.4318 (2)0.7265 (2)0.29317 (12)0.0701 (6)
H41.53670.69870.27770.084*
C51.3603 (2)0.8508 (2)0.31527 (11)0.0621 (5)
H51.41570.90740.31460.074*
C5'1.26861 (18)0.37364 (18)0.17157 (10)0.0559 (4)
H5'1.32000.43300.17200.067*
C61.20280 (18)0.89080 (16)0.33877 (9)0.0486 (4)
C6'1.12073 (17)0.40739 (15)0.15260 (9)0.0454 (3)
C71.09697 (19)1.00924 (16)0.36680 (10)0.0514 (4)
H71.12011.08400.37120.062*
C7'1.02433 (17)0.52315 (15)0.12936 (9)0.0475 (4)
H7'1.04580.59930.12650.057*
C8'0.89647 (17)0.50409 (14)0.11210 (9)0.0429 (3)
C80.95772 (18)0.99525 (15)0.38603 (9)0.0461 (3)
C9'0.78298 (17)0.58882 (14)0.06981 (9)0.0439 (3)
C90.82428 (18)1.08384 (16)0.43345 (9)0.0493 (4)
C10'0.74687 (16)0.72726 (14)0.08203 (9)0.0415 (3)
C100.79218 (18)1.22132 (15)0.42177 (9)0.0468 (4)
C110.72410 (19)1.30446 (17)0.48355 (10)0.0537 (4)
H110.70301.27350.53120.064*
C11'0.74584 (19)0.78266 (15)0.15170 (9)0.0493 (4)
H11'0.77380.73260.19250.059*
C12'0.7028 (2)0.91320 (17)0.16001 (11)0.0586 (4)
H12'0.69830.95080.20700.070*
C120.6877 (2)1.43246 (18)0.47447 (12)0.0635 (5)
H120.64521.48780.51630.076*
C130.7142 (2)1.47895 (18)0.40350 (14)0.0707 (5)
H130.68731.56560.39740.085*
C13'0.6669 (2)0.98698 (16)0.09905 (12)0.0595 (5)
H13'0.64001.07430.10470.071*
C14'0.67055 (19)0.93190 (16)0.02912 (11)0.0556 (4)
H14'0.64860.98200.01240.067*
C140.7801 (3)1.39750 (19)0.34158 (13)0.0721 (6)
H140.79721.42930.29380.087*
C150.8211 (2)1.26808 (17)0.35029 (10)0.0593 (4)
H150.86761.21300.30870.071*
C15'0.70660 (17)0.80322 (15)0.02128 (9)0.0480 (4)
H15'0.70410.76660.02500.058*
C160.78168 (17)0.77029 (15)0.46542 (9)0.0460 (3)
C16'0.76892 (17)0.26929 (14)0.03053 (9)0.0425 (3)
C17'0.64230 (19)0.31640 (17)0.00556 (10)0.0525 (4)
H17'0.55450.37540.01910.063*
C170.6358 (2)0.81398 (18)0.50410 (11)0.0604 (4)
H170.55820.86970.48200.073*
C18'0.6491 (2)0.27381 (19)0.07907 (11)0.0615 (5)
H18'0.56510.30470.10420.074*
C180.6068 (3)0.7732 (2)0.57678 (12)0.0728 (6)
H180.50880.80180.60390.087*
C190.7221 (3)0.6908 (2)0.60898 (11)0.0720 (6)
H190.70170.66460.65800.086*
C19'0.7790 (2)0.18625 (18)0.11532 (10)0.0595 (4)
H19'0.78260.15880.16490.071*
C200.8674 (2)0.64670 (19)0.56934 (12)0.0674 (5)
H200.94470.59040.59130.081*
C20'0.9040 (2)0.13900 (17)0.07847 (11)0.0572 (4)
H20'0.99130.07930.10310.069*
C21'0.89966 (18)0.18017 (15)0.00517 (10)0.0500 (4)
H21'0.98350.14850.02000.060*
C210.8978 (2)0.68629 (17)0.49705 (10)0.0559 (4)
H210.99550.65680.46970.067*
N10.96883 (15)0.86837 (12)0.36984 (7)0.0467 (3)
N1'0.90578 (14)0.37628 (11)0.12457 (7)0.0426 (3)
O1'0.80070 (16)0.20614 (12)0.16827 (7)0.0645 (4)
O10.87435 (16)0.70347 (13)0.32343 (7)0.0672 (4)
O2'0.62388 (13)0.41561 (13)0.14936 (7)0.0630 (3)
O20.69510 (15)0.91680 (14)0.35443 (8)0.0673 (4)
O30.74722 (15)1.04506 (12)0.48283 (7)0.0645 (3)
O3'0.72679 (15)0.54592 (11)0.02333 (7)0.0602 (3)
S1'0.76114 (4)0.31681 (4)0.12514 (2)0.04706 (13)
S10.81966 (5)0.81457 (4)0.37162 (2)0.05089 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (8)0.0498 (8)0.0411 (8)0.0155 (7)0.0035 (6)0.0043 (7)
C1'0.0429 (8)0.0457 (8)0.0392 (7)0.0125 (6)0.0073 (6)0.0004 (6)
C2'0.0607 (10)0.0490 (9)0.0533 (10)0.0134 (8)0.0115 (8)0.0090 (7)
C20.0634 (11)0.0521 (10)0.0576 (10)0.0154 (8)0.0006 (8)0.0032 (8)
C30.0633 (11)0.0638 (11)0.0618 (12)0.0044 (9)0.0048 (9)0.0003 (9)
C3'0.0611 (11)0.0620 (11)0.0512 (10)0.0002 (9)0.0134 (8)0.0085 (8)
C4'0.0468 (9)0.0795 (13)0.0536 (10)0.0025 (9)0.0160 (8)0.0050 (9)
C40.0478 (10)0.0844 (14)0.0652 (12)0.0069 (10)0.0018 (9)0.0135 (11)
C50.0480 (9)0.0751 (12)0.0648 (11)0.0225 (9)0.0077 (8)0.0190 (10)
C5'0.0421 (8)0.0696 (11)0.0554 (10)0.0145 (8)0.0109 (7)0.0107 (8)
C60.0480 (8)0.0543 (9)0.0459 (8)0.0189 (7)0.0093 (7)0.0106 (7)
C6'0.0422 (8)0.0493 (8)0.0449 (8)0.0135 (7)0.0085 (6)0.0040 (7)
C70.0527 (9)0.0491 (9)0.0562 (10)0.0207 (7)0.0100 (7)0.0083 (7)
C7'0.0453 (8)0.0435 (8)0.0574 (9)0.0176 (7)0.0105 (7)0.0017 (7)
C8'0.0432 (8)0.0393 (7)0.0479 (8)0.0146 (6)0.0084 (6)0.0016 (6)
C80.0489 (8)0.0442 (8)0.0464 (8)0.0151 (7)0.0093 (7)0.0042 (7)
C9'0.0413 (8)0.0439 (8)0.0480 (8)0.0145 (6)0.0082 (6)0.0016 (6)
C90.0495 (9)0.0514 (9)0.0483 (9)0.0169 (7)0.0092 (7)0.0025 (7)
C10'0.0366 (7)0.0411 (7)0.0469 (8)0.0125 (6)0.0054 (6)0.0020 (6)
C100.0469 (8)0.0469 (8)0.0472 (9)0.0137 (7)0.0110 (7)0.0008 (7)
C110.0499 (9)0.0575 (10)0.0520 (9)0.0134 (8)0.0085 (7)0.0041 (8)
C11'0.0521 (9)0.0501 (9)0.0459 (9)0.0169 (7)0.0061 (7)0.0022 (7)
C12'0.0617 (10)0.0544 (10)0.0585 (10)0.0194 (8)0.0012 (8)0.0122 (8)
C120.0565 (10)0.0572 (11)0.0749 (13)0.0128 (9)0.0129 (9)0.0175 (9)
C130.0742 (13)0.0469 (10)0.0918 (16)0.0160 (9)0.0213 (11)0.0011 (10)
C13'0.0523 (10)0.0404 (8)0.0825 (13)0.0135 (7)0.0015 (9)0.0004 (9)
C14'0.0475 (9)0.0502 (9)0.0667 (11)0.0122 (7)0.0084 (8)0.0154 (8)
C140.0906 (15)0.0569 (11)0.0682 (12)0.0203 (10)0.0163 (11)0.0143 (10)
C150.0727 (12)0.0522 (10)0.0505 (10)0.0154 (9)0.0103 (9)0.0018 (8)
C15'0.0441 (8)0.0505 (9)0.0480 (9)0.0125 (7)0.0075 (7)0.0042 (7)
C160.0454 (8)0.0494 (8)0.0485 (9)0.0218 (7)0.0079 (7)0.0002 (7)
C16'0.0414 (7)0.0425 (8)0.0492 (8)0.0202 (6)0.0090 (6)0.0036 (6)
C17'0.0431 (8)0.0557 (9)0.0591 (10)0.0130 (7)0.0135 (7)0.0017 (8)
C170.0479 (9)0.0646 (11)0.0661 (11)0.0161 (8)0.0030 (8)0.0049 (9)
C18'0.0569 (10)0.0734 (12)0.0590 (11)0.0206 (9)0.0234 (8)0.0028 (9)
C180.0672 (12)0.0823 (14)0.0642 (12)0.0260 (11)0.0116 (10)0.0008 (11)
C190.0952 (16)0.0792 (14)0.0492 (10)0.0406 (12)0.0055 (10)0.0034 (10)
C19'0.0677 (11)0.0671 (11)0.0502 (10)0.0294 (9)0.0108 (8)0.0017 (8)
C200.0764 (13)0.0684 (12)0.0638 (12)0.0252 (10)0.0255 (10)0.0125 (10)
C20'0.0509 (9)0.0571 (10)0.0606 (11)0.0166 (8)0.0010 (8)0.0061 (8)
C21'0.0417 (8)0.0506 (9)0.0590 (10)0.0143 (7)0.0116 (7)0.0040 (7)
C210.0479 (9)0.0632 (10)0.0577 (10)0.0182 (8)0.0090 (8)0.0008 (8)
N10.0466 (7)0.0470 (7)0.0483 (7)0.0194 (6)0.0016 (6)0.0014 (6)
N1'0.0433 (7)0.0406 (6)0.0490 (7)0.0177 (5)0.0130 (5)0.0048 (5)
O1'0.0880 (9)0.0694 (8)0.0565 (7)0.0497 (7)0.0219 (7)0.0190 (6)
O10.0812 (9)0.0753 (9)0.0569 (7)0.0428 (7)0.0059 (6)0.0125 (6)
O2'0.0451 (6)0.0798 (9)0.0639 (8)0.0232 (6)0.0018 (6)0.0145 (7)
O20.0564 (7)0.0859 (9)0.0659 (8)0.0249 (7)0.0245 (6)0.0188 (7)
O30.0687 (8)0.0578 (7)0.0618 (8)0.0197 (6)0.0071 (6)0.0036 (6)
O3'0.0687 (8)0.0488 (7)0.0688 (8)0.0171 (6)0.0303 (6)0.0006 (6)
S1'0.0479 (2)0.0545 (2)0.0467 (2)0.02702 (18)0.00772 (17)0.00296 (17)
S10.0513 (2)0.0616 (3)0.0474 (2)0.0268 (2)0.01145 (18)0.00232 (19)
Geometric parameters (Å, º) top
C1—C21.391 (2)C12'—C13'1.373 (3)
C1—C61.406 (2)C12'—H12'0.9300
C1—N11.414 (2)C12—C131.379 (3)
C1'—C6'1.397 (2)C12—H120.9300
C1'—C2'1.397 (2)C13—C141.377 (3)
C1'—N1'1.4150 (18)C13—H130.9300
C2'—C3'1.378 (3)C13'—C14'1.386 (3)
C2'—H2'0.9300C13'—H13'0.9300
C2—C31.378 (3)C14'—C15'1.372 (2)
C2—H20.9300C14'—H14'0.9300
C3—C41.383 (3)C14—C151.387 (3)
C3—H30.9300C14—H140.9300
C3'—C4'1.393 (3)C15—H150.9300
C3'—H3'0.9300C15'—H15'0.9300
C4'—C5'1.370 (3)C16—C171.374 (2)
C4'—H4'0.9300C16—C211.381 (2)
C4—C51.372 (3)C16—S11.7551 (16)
C4—H40.9300C16'—C17'1.384 (2)
C5—C61.398 (2)C16'—C21'1.384 (2)
C5—H50.9300C16'—S1'1.7563 (16)
C5'—C6'1.404 (2)C17'—C18'1.383 (3)
C5'—H5'0.9300C17'—H17'0.9300
C6—C71.425 (2)C17—C181.385 (3)
C6'—C7'1.423 (2)C17—H170.9300
C7—C81.350 (2)C18'—C19'1.375 (3)
C7—H70.9300C18'—H18'0.9300
C7'—C8'1.352 (2)C18—C191.374 (3)
C7'—H7'0.9300C18—H180.9300
C8'—N1'1.4179 (18)C19—C201.376 (3)
C8'—C9'1.477 (2)C19—H190.9300
C8—N11.416 (2)C19'—C20'1.380 (3)
C8—C91.479 (2)C19'—H19'0.9300
C9'—O3'1.2158 (19)C20—C211.376 (3)
C9'—C10'1.486 (2)C20—H200.9300
C9—O31.216 (2)C20'—C21'1.379 (3)
C9—C101.487 (2)C20'—H20'0.9300
C10'—C11'1.389 (2)C21'—H21'0.9300
C10'—C15'1.390 (2)C21—H210.9300
C10—C111.388 (2)N1—S11.6734 (13)
C10—C151.393 (2)N1'—S1'1.6761 (12)
C11—C121.375 (2)O1'—S1'1.4254 (12)
C11—H110.9300O1—S11.4264 (14)
C11'—C12'1.388 (2)O2'—S1'1.4197 (13)
C11'—H11'0.9300O2—S11.4217 (13)
C2—C1—C6121.55 (16)C14—C13—C12120.26 (18)
C2—C1—N1131.80 (16)C14—C13—H13119.9
C6—C1—N1106.64 (14)C12—C13—H13119.9
C6'—C1'—C2'121.26 (14)C12'—C13'—C14'120.30 (16)
C6'—C1'—N1'107.10 (13)C12'—C13'—H13'119.8
C2'—C1'—N1'131.59 (14)C14'—C13'—H13'119.8
C3'—C2'—C1'117.05 (17)C15'—C14'—C13'119.78 (16)
C3'—C2'—H2'121.5C15'—C14'—H14'120.1
C1'—C2'—H2'121.5C13'—C14'—H14'120.1
C3—C2—C1117.18 (19)C13—C14—C15120.16 (19)
C3—C2—H2121.4C13—C14—H14119.9
C1—C2—H2121.4C15—C14—H14119.9
C2—C3—C4122.13 (19)C14—C15—C10119.49 (18)
C2—C3—H3118.9C14—C15—H15120.3
C4—C3—H3118.9C10—C15—H15120.3
C2'—C3'—C4'122.34 (17)C14'—C15'—C10'120.45 (16)
C2'—C3'—H3'118.8C14'—C15'—H15'119.8
C4'—C3'—H3'118.8C10'—C15'—H15'119.8
C5'—C4'—C3'120.69 (16)C17—C16—C21121.50 (16)
C5'—C4'—H4'119.7C17—C16—S1119.44 (13)
C3'—C4'—H4'119.7C21—C16—S1118.96 (13)
C5—C4—C3120.89 (18)C17'—C16'—C21'121.27 (15)
C5—C4—H4119.6C17'—C16'—S1'119.65 (13)
C3—C4—H4119.6C21'—C16'—S1'118.99 (12)
C4—C5—C6118.82 (18)C18'—C17'—C16'118.61 (16)
C4—C5—H5120.6C18'—C17'—H17'120.7
C6—C5—H5120.6C16'—C17'—H17'120.7
C4'—C5'—C6'118.42 (17)C16—C17—C18118.52 (18)
C4'—C5'—H5'120.8C16—C17—H17120.7
C6'—C5'—H5'120.8C18—C17—H17120.7
C5—C6—C1119.41 (16)C19'—C18'—C17'120.57 (17)
C5—C6—C7132.82 (17)C19'—C18'—H18'119.7
C1—C6—C7107.72 (14)C17'—C18'—H18'119.7
C1'—C6'—C5'120.22 (15)C19—C18—C17120.33 (19)
C1'—C6'—C7'107.86 (13)C19—C18—H18119.8
C5'—C6'—C7'131.83 (16)C17—C18—H18119.8
C8—C7—C6108.95 (15)C18—C19—C20120.59 (18)
C8—C7—H7125.5C18—C19—H19119.7
C6—C7—H7125.5C20—C19—H19119.7
C8'—C7'—C6'108.73 (14)C18'—C19'—C20'120.29 (17)
C8'—C7'—H7'125.6C18'—C19'—H19'119.9
C6'—C7'—H7'125.6C20'—C19'—H19'119.9
C7'—C8'—N1'108.63 (13)C21—C20—C19119.68 (18)
C7'—C8'—C9'126.66 (14)C21—C20—H20120.2
N1'—C8'—C9'123.14 (13)C19—C20—H20120.2
C7—C8—N1108.47 (14)C21'—C20'—C19'120.09 (17)
C7—C8—C9126.76 (15)C21'—C20'—H20'120.0
N1—C8—C9123.09 (14)C19'—C20'—H20'120.0
O3'—C9'—C8'120.50 (14)C20'—C21'—C16'119.15 (15)
O3'—C9'—C10'121.06 (14)C20'—C21'—H21'120.4
C8'—C9'—C10'118.33 (13)C16'—C21'—H21'120.4
O3—C9—C8120.57 (15)C20—C21—C16119.37 (17)
O3—C9—C10121.10 (15)C20—C21—H21120.3
C8—C9—C10118.26 (14)C16—C21—H21120.3
C11'—C10'—C15'119.57 (14)C1—N1—C8108.21 (13)
C11'—C10'—C9'122.77 (14)C1—N1—S1126.37 (11)
C15'—C10'—C9'117.61 (14)C8—N1—S1124.59 (11)
C11—C10—C15119.75 (16)C1'—N1'—C8'107.66 (12)
C11—C10—C9118.40 (15)C1'—N1'—S1'126.32 (10)
C15—C10—C9121.76 (15)C8'—N1'—S1'124.95 (10)
C12—C11—C10120.12 (17)O2'—S1'—O1'119.73 (8)
C12—C11—H11119.9O2'—S1'—N1'107.50 (7)
C10—C11—H11119.9O1'—S1'—N1'104.83 (7)
C12'—C11'—C10'119.56 (16)O2'—S1'—C16'110.44 (8)
C12'—C11'—H11'120.2O1'—S1'—C16'107.87 (8)
C10'—C11'—H11'120.2N1'—S1'—C16'105.46 (7)
C13'—C12'—C11'120.25 (18)O2—S1—O1119.56 (9)
C13'—C12'—H12'119.9O2—S1—N1107.30 (7)
C11'—C12'—H12'119.9O1—S1—N1105.18 (7)
C11—C12—C13120.17 (18)O2—S1—C16110.09 (8)
C11—C12—H12119.9O1—S1—C16108.48 (8)
C13—C12—H12119.9N1—S1—C16105.20 (7)
C6'—C1'—C2'—C3'1.4 (2)C13'—C14'—C15'—C10'3.2 (2)
N1'—C1'—C2'—C3'175.84 (16)C11'—C10'—C15'—C14'2.0 (2)
C6—C1—C2—C31.7 (3)C9'—C10'—C15'—C14'179.39 (14)
N1—C1—C2—C3176.50 (17)C21'—C16'—C17'—C18'0.8 (2)
C1—C2—C3—C40.6 (3)S1'—C16'—C17'—C18'177.48 (14)
C1'—C2'—C3'—C4'0.1 (3)C21—C16—C17—C180.8 (3)
C2'—C3'—C4'—C5'0.6 (3)S1—C16—C17—C18177.02 (16)
C2—C3—C4—C50.5 (3)C16'—C17'—C18'—C19'0.2 (3)
C3—C4—C5—C60.4 (3)C16—C17—C18—C190.1 (3)
C3'—C4'—C5'—C6'0.1 (3)C17—C18—C19—C200.6 (3)
C4—C5—C6—C10.7 (3)C17'—C18'—C19'—C20'0.5 (3)
C4—C5—C6—C7177.74 (18)C18—C19—C20—C210.5 (3)
C2—C1—C6—C51.8 (2)C18'—C19'—C20'—C21'0.5 (3)
N1—C1—C6—C5176.81 (15)C19'—C20'—C21'—C16'0.2 (3)
C2—C1—C6—C7179.50 (16)C17'—C16'—C21'—C20'0.8 (2)
N1—C1—C6—C70.91 (17)S1'—C16'—C21'—C20'177.51 (13)
C2'—C1'—C6'—C5'2.1 (2)C19—C20—C21—C160.2 (3)
N1'—C1'—C6'—C5'175.76 (14)C17—C16—C21—C200.9 (3)
C2'—C1'—C6'—C7'179.13 (15)S1—C16—C21—C20177.14 (14)
N1'—C1'—C6'—C7'1.29 (17)C2—C1—N1—C8178.72 (17)
C4'—C5'—C6'—C1'1.4 (2)C6—C1—N1—C80.33 (17)
C4'—C5'—C6'—C7'177.59 (17)C2—C1—N1—S111.4 (3)
C5—C6—C7—C8176.10 (18)C6—C1—N1—S1170.23 (11)
C1—C6—C7—C81.19 (19)C7—C8—N1—C10.41 (18)
C1'—C6'—C7'—C8'1.27 (18)C9—C8—N1—C1165.74 (14)
C5'—C6'—C7'—C8'175.31 (17)C7—C8—N1—S1169.71 (12)
C6'—C7'—C8'—N1'0.73 (18)C9—C8—N1—S124.1 (2)
C6'—C7'—C8'—C9'165.23 (15)C6'—C1'—N1'—C8'0.86 (16)
C6—C7—C8—N10.98 (18)C2'—C1'—N1'—C8'178.39 (16)
C6—C7—C8—C9164.52 (15)C6'—C1'—N1'—S1'169.40 (11)
C7'—C8'—C9'—O3'139.58 (18)C2'—C1'—N1'—S1'13.1 (2)
N1'—C8'—C9'—O3'24.5 (2)C7'—C8'—N1'—C1'0.08 (17)
C7'—C8'—C9'—C10'36.7 (2)C9'—C8'—N1'—C1'166.64 (14)
N1'—C8'—C9'—C10'159.25 (14)C7'—C8'—N1'—S1'168.82 (12)
C7—C8—C9—O3135.37 (19)C9'—C8'—N1'—S1'24.6 (2)
N1—C8—C9—O328.2 (2)C1'—N1'—S1'—O2'137.76 (13)
C7—C8—C9—C1041.5 (2)C8'—N1'—S1'—O2'28.89 (15)
N1—C8—C9—C10154.98 (15)C1'—N1'—S1'—O1'9.35 (15)
O3'—C9'—C10'—C11'149.60 (16)C8'—N1'—S1'—O1'157.30 (13)
C8'—C9'—C10'—C11'34.2 (2)C1'—N1'—S1'—C16'104.39 (13)
O3'—C9'—C10'—C15'27.7 (2)C8'—N1'—S1'—C16'88.95 (14)
C8'—C9'—C10'—C15'148.56 (14)C17'—C16'—S1'—O2'8.10 (15)
O3—C9—C10—C1127.8 (2)C21'—C16'—S1'—O2'175.18 (12)
C8—C9—C10—C11148.99 (15)C17'—C16'—S1'—O1'124.45 (13)
O3—C9—C10—C15148.71 (18)C21'—C16'—S1'—O1'52.28 (14)
C8—C9—C10—C1534.5 (2)C17'—C16'—S1'—N1'123.95 (13)
C15—C10—C11—C121.1 (3)C21'—C16'—S1'—N1'59.33 (13)
C9—C10—C11—C12177.72 (16)C1—N1—S1—O2140.16 (13)
C15'—C10'—C11'—C12'0.8 (2)C8—N1—S1—O228.17 (15)
C9'—C10'—C11'—C12'176.44 (15)C1—N1—S1—O111.85 (15)
C10'—C11'—C12'—C13'2.4 (3)C8—N1—S1—O1156.48 (13)
C10—C11—C12—C132.1 (3)C1—N1—S1—C16102.62 (14)
C11—C12—C13—C141.4 (3)C8—N1—S1—C1689.06 (14)
C11'—C12'—C13'—C14'1.2 (3)C17—C16—S1—O213.85 (17)
C12'—C13'—C14'—C15'1.6 (3)C21—C16—S1—O2169.87 (14)
C12—C13—C14—C150.4 (3)C17—C16—S1—O1118.69 (15)
C13—C14—C15—C101.4 (3)C21—C16—S1—O157.58 (15)
C11—C10—C15—C140.6 (3)C17—C16—S1—N1129.16 (15)
C9—C10—C15—C14175.87 (18)C21—C16—S1—N154.56 (15)

Experimental details

Crystal data
Chemical formulaC21H15NO3S
Mr361.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3291 (6), 11.1498 (7), 17.8134 (10)
α, β, γ (°)89.433 (3), 81.623 (2), 71.993 (3)
V3)1742.13 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
30464, 8730, 6363
Rint0.041
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.138, 0.99
No. of reflections8730
No. of parameters470
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

SR and ASP thank the Technology Business Incubator (TBI), the CAS in Crystallography and Biophysics, University of Madras, Chennai, and the Department of Science and Technology (DST) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKavitha, T., Thenmozhi, M., Dhayalan, V., Mohanakrishnan, A. K. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o1071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525–4542.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. & Kauffman, L. R. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687–690.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251–259.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds