metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m458-m459

The one-dimensional organic–inorganic hybrid: catena-poly[bis­­[1-(3-ammonio­prop­yl)-1H-imidazolium] [[iodidoplumbate(II)]-tri-μ-iodido-plumbate(II)-tri-μ-iodido-[iodidoplumbate(II)]-di-μ-iodido]]

aLaboratoire de Physique Appliquée (LPA), Faculté des Sciences de Sfax, 3018, BP 802, Tunisia, and bLaboratoire de Cristallochimie et des Matériaux, Faculté des Sciences de Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

(Received 19 February 2011; accepted 11 March 2011; online 15 March 2011)

The organic–inorganic hybrid, {(C6H13N3)2[Pb3I10]}n, was obtained by the reaction of 1-(3-ammonio­prop­yl)imidazolium triiodide and PbI2 at room temperature. The structure contains one-dimensional {[Pb3I10]4−}n polymeric anions spreading parallel to [001], resulting from face–face–edge association of PbI6 distorted octa­hedra. One of the PbII cations is imposed at an inversion centre, whereas the second occupies a general position. N—H⋯I hydrogen bonds connect the organic cations and inorganic anions.

Related literature

For organic–inorganic hybrid materials, see: Billing & Lemmerer (2004[Billing, D. G. & Lemmerer, A. (2004). Acta Cryst. C60, m224-m226.]); Dammak et al. (2009[Dammak, T., Koubaa, M., Boukheddaden, K., Boughzala, H., Mlayah, A. & Abid, Y. (2009). J. Phys. Chem. 113, 19305-19309.]); Elleuch et al. (2007[Elleuch, S., Boughzala, H., Driss, A. & Abid, Y. (2007). Acta Cryst. E63, m306-m308.], 2010[Elleuch, S., Dammak, T., Abid, Y., Mlayah, A. & Boughzala, H. (2010). J. Lumin. 130, 531-535.]); Gebauer & Schmid (1999[Gebauer, T. & Schmid, G. (1999). Z. Anorg. Allg. Chem. 625, 1124-1128.]); Ishihara et al. (1990[Ishihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B, 42, 17, 11099-11107.]); Krautscheid et al. (2001[Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104.]). For the structures of lead iodide-based complexes, see: Maxcy et al. (2003[Maxcy, K. R., Willett, R. D., Mitzi, D. B. & Afzali, A. (2003). Acta Cryst. E59, m364-m366.]); Mitzi et al. (2001[Mitzi, D. B., Chondroudis, K. & Kagan, C. R. (2001). IBM J. Res. Dev. 45, 29-45.]); Mousdis et al. (1998[Mousdis, G. A., Gionis, V., Papavassiliou, C. P. & Terzis, A. (1998). J. Mater. Chem. 8, 2259-2262.]); Papavassiliou et al. (1999[Papavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265-271.]); Samet Kallel et al. (2008[Samet Kallel, E., Boughzala, H., Driss, A. & Abid, Y. (2008). Acta Cryst. E64, m921.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H13N3)2[Pb3I10]

  • Mr = 2144.99

  • Triclinic, [P \overline 1]

  • a = 8.652 (3) Å

  • b = 11.728 (5) Å

  • c = 11.972 (6) Å

  • α = 117.21 (3)°

  • β = 98.05 (2)°

  • γ = 107.17 (3)°

  • V = 976.7 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 20.81 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.02 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.139, Tmax = 0.624

  • 4950 measured reflections

  • 3796 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.024

  • 2 standard reflections every 120 min intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.02

  • 3796 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 2.17 e Å−3

  • Δρmin = −2.09 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pb1—I5 3.155 (2)
Pb1—I1 3.1757 (13)
Pb1—I3 3.2264 (14)
Pb1—I1i 3.2652 (13)
Pb1—I2 3.3039 (14)
Pb1—I4 3.309 (2)
Pb2—I4 3.2105 (15)
Pb2—I3 3.2388 (14)
Pb2—I2 3.263 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯I5 0.89 2.84 3.67 (2) 156
N9—H9B⋯I2iii 0.89 2.90 3.68 (2) 147
N9—H9C⋯I5iv 0.89 2.89 3.64 (2) 143
Symmetry codes: (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, self-assembling organic–inorganic hybrid compounds have been the focus of a great number of investigations owing to their unique structural, magnetic, optical nonlinear and optoelectronic functionality (Papavassiliou et al., 1999; Ishihara et al., 1990; Mitzi et al., 2001). In particular, the lead iodide-based hybrid materials have been extensively studied (Gebauer & Schmid, 1999; Dammak et al., 2009; Elleuch et al., 2010) since they show strong room temperature excitonic optical features with large exciton binding energy and oscillator strengths. These low dimensional complexes include zero dimensional (0D), one dimensional (1D), and two dimensional (2D) lead iodide networks with organic groups as spacers. Among them, 1D-hybrids are more attractive in nanoscaled applications since they form a variety of crystalline structures, which differ in the inorganic chain where the [PbI6] octahedra can be connected in different ways: face sharing (Elleuch et al., 2007), edge sharing (Samet Kallel et al., 2008), corner sharing (Mousdis et al., 1998) or through several combinations of these various types of sharing (Maxcy et al., 2003; Billing & Lemmerer, 2004; Krautscheid et al., 2001), as in the case of our compound. We present here the structure of the organic–inorganic one dimensional hybrid compound (C6H13N3)2Pb3I10.

The crystal structure of the title compound consists of (Pb3I10)n4n- chains extending along [001] with the 1-(3-ammoniopropyl)-imidazolium cations as counter-ions (Fig. 1). The inorganic anion, shown in Fig. 1, can be considered as a set of mixed face-shared/edge-shared octahedra. In fact, the unit cell contains three octahedra with two crystallographically independent Pb atoms: Pb1 and Pb2. The central Pb2 octahedron is connected to the Pb1 octahedra by shared faces, while the Pb1 octahedra are linked via edge-sharing at both ends of Pb3I104- to adjacent units.

The coordination octahedron of the central lead ion Pb2 is only slightly distorted since it is located on an inversion centre and is bound to three unique I atoms: I2, I3 and I4, which participate in the face-sharing between the Pb2 and Pb1 octahedra. The bond lengths around Pb2 are very similar (3.2105 (15), 3.2388 (14), 3.263 (2) Å), the bond angles I—Pb2—I deviate slightly from ideal octahedral values, ranging from 83° to 94°. In contrast, Pb1 has a more distorted environement with Pb—I distances ranging from 3.155 (2) to 3.309 (2) Å and with all cis and trans angles different (see Table 1). This Pb atom is bonded to five unique I atoms, where two I1 atoms are responsible for the edge sharing between the neighbouring units to form one-dimensional infinite chains. Atom I5 is the only halide not involved in any bonding with adjacent octahedra and has the shortest Pb—I distance [3.155 (2) Å].

Cations fill channels between the anionic chains (Fig.2). Each terminal ammonium group forms three N—H···I hydrogen bonds to I atoms of three different chains (see Table 2).

Related literature top

For organic–inorganic hybrid materials, see: Billing & Lemmerer (2004); Dammak et al. (2009); Elleuch et al. (2007, 2010); Gebauer & Schmid (1999); Ishihara et al. (1990); Krautscheid et al. (2001). For the structures of lead iodide-based complexes, see: Maxcy et al. (2003); Mitzi et al. (2001); Mousdis et al. (1998); Papavassiliou et al. (1999); Samet Kallel et al. (2008).

Experimental top

Single crystals of (C6H13N3)2Pb3I10 were grown by the slow evaporation at room temperature of a solution containing PbI2 and C6H13N3I3 salts. An aqueous solution of HI was added to the aminopropylimidazole to synthesize C6H13N3I3 precursor. Under ambient conditions, stoechiometric amounts of C6H13N3I3 and PbI2 with excess HI were sailed in DMF. This mixture was stirred and remained clear without any precipitate. Pale-yellow flatted crystals were obtained few weeks later. Supplementary data for this paper are available from the IUCr electronic archives (Reference: CCDC 782074).

Refinement top

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) or 0.93 Å (CH) and N—H = 0.89 Å (NH3) or 0.86 Å (NH) with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (C6H13N3)2Pb3I10 with some adjacent atoms showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) 1 - x, 2 - y, 2 - z]
[Figure 2] Fig. 2. The crystal packing of (C6H13N3)2Pb3I10 viewed along [001] direction and showing the N—H···I hydrogen bonding (dashed lines).
catena-poly[bis[1-(3-ammoniopropyl)-1H-imidazolium] [[iodidoplumbate(II)]-tri-µ-iodido-plumbate(II)-tri-µ-iodido- [iodidoplumbate(II)]-di-µ-iodido]] top
Crystal data top
(C6H13N3)2[Pb3I10]Z = 1
Mr = 2144.99F(000) = 916
Triclinic, P1Dx = 3.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.652 (3) ÅCell parameters from 25 reflections
b = 11.728 (5) Åθ = 9–15°
c = 11.972 (6) ŵ = 20.81 mm1
α = 117.21 (3)°T = 293 K
β = 98.05 (2)°Flat, yellow
γ = 107.17 (3)°0.4 × 0.2 × 0.02 mm
V = 976.7 (9) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
non–profiled ω/2θ scansh = 102
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.139, Tmax = 0.624l = 1414
4950 measured reflections2 standard reflections every 120 min
3796 independent reflections intensity decay: 6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3796 reflectionsΔρmax = 2.17 e Å3
143 parametersΔρmin = 2.09 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00169 (17)
Crystal data top
(C6H13N3)2[Pb3I10]γ = 107.17 (3)°
Mr = 2144.99V = 976.7 (9) Å3
Triclinic, P1Z = 1
a = 8.652 (3) ÅMo Kα radiation
b = 11.728 (5) ŵ = 20.81 mm1
c = 11.972 (6) ÅT = 293 K
α = 117.21 (3)°0.4 × 0.2 × 0.02 mm
β = 98.05 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2749 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.139, Tmax = 0.6242 standard reflections every 120 min
4950 measured reflections intensity decay: 6%
3796 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 2.17 e Å3
3796 reflectionsΔρmin = 2.09 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.45091 (5)0.90517 (4)0.62320 (4)0.03669 (15)
Pb20.50001.00001.00000.03708 (18)
I10.76440 (9)0.98779 (8)0.52450 (7)0.0436 (2)
I20.14853 (9)0.82298 (7)0.74775 (7)0.0436 (2)
I30.67368 (10)0.82982 (8)0.79737 (7)0.0432 (2)
I40.59957 (11)1.21598 (7)0.90100 (8)0.0505 (2)
I50.30697 (11)0.59287 (8)0.38118 (8)0.0501 (2)
N90.2562 (18)0.3757 (14)0.5290 (12)0.073 (4)
H9A0.29590.41980.48850.109*
H9B0.15950.30060.47320.109*
H9C0.33320.34870.55450.109*
C80.223 (2)0.4705 (14)0.6451 (14)0.060 (4)
H8A0.13980.50000.61720.073*
H8B0.32810.55340.70470.073*
C70.1565 (18)0.3985 (15)0.7187 (14)0.057 (3)
H7A0.10320.45160.77620.069*
H7B0.06820.30580.65360.069*
C60.2864 (16)0.3825 (13)0.8013 (12)0.050 (3)
H6A0.33630.32450.74490.060*
H6B0.37730.47390.86630.060*
N10.2042 (13)0.3173 (9)0.8694 (9)0.045 (2)
C20.1429 (17)0.1818 (12)0.8230 (12)0.050 (3)
H20.14880.11270.74580.060*
N30.0710 (14)0.1625 (10)0.9077 (11)0.054 (3)
H30.02120.08250.89930.065*
C40.0878 (19)0.2879 (14)1.0096 (14)0.058 (3)
H40.04710.30251.08080.069*
C50.1731 (18)0.3842 (14)0.9870 (13)0.057 (3)
H50.20650.48051.04110.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0386 (3)0.0395 (2)0.0362 (2)0.01781 (19)0.01491 (18)0.02124 (19)
Pb20.0412 (3)0.0372 (3)0.0332 (3)0.0167 (3)0.0139 (2)0.0179 (2)
I10.0373 (4)0.0564 (4)0.0468 (4)0.0216 (4)0.0182 (3)0.0318 (4)
I20.0343 (4)0.0428 (4)0.0479 (4)0.0126 (3)0.0151 (3)0.0210 (3)
I30.0473 (4)0.0506 (4)0.0447 (4)0.0300 (4)0.0203 (3)0.0272 (3)
I40.0590 (5)0.0321 (4)0.0514 (4)0.0121 (4)0.0103 (4)0.0213 (3)
I50.0543 (5)0.0409 (4)0.0411 (4)0.0177 (4)0.0087 (4)0.0140 (3)
N90.090 (10)0.089 (9)0.074 (8)0.051 (8)0.035 (7)0.057 (7)
C80.085 (11)0.058 (8)0.062 (8)0.034 (8)0.029 (7)0.045 (7)
C70.063 (9)0.065 (8)0.062 (8)0.030 (7)0.026 (7)0.042 (7)
C60.045 (7)0.053 (7)0.055 (7)0.021 (6)0.019 (6)0.030 (6)
N10.044 (6)0.038 (5)0.042 (5)0.015 (4)0.006 (4)0.017 (4)
C20.055 (8)0.038 (6)0.041 (6)0.021 (6)0.005 (6)0.012 (5)
N30.056 (7)0.041 (5)0.058 (6)0.007 (5)0.009 (5)0.030 (5)
C40.068 (9)0.061 (8)0.058 (8)0.026 (7)0.038 (7)0.037 (7)
C50.064 (9)0.045 (7)0.051 (7)0.020 (7)0.018 (7)0.018 (6)
Geometric parameters (Å, º) top
Pb1—I53.155 (2)C8—H8A0.9700
Pb1—I13.1757 (13)C8—H8B0.9700
Pb1—I33.2264 (14)C7—C61.502 (18)
Pb1—I1i3.2652 (13)C7—H7A0.9700
Pb1—I23.3039 (14)C7—H7B0.9700
Pb1—I43.309 (2)C6—N11.473 (16)
Pb2—I43.2105 (15)C6—H6A0.9700
Pb2—I4ii3.2105 (14)C6—H6B0.9700
Pb2—I33.2388 (14)N1—C21.315 (15)
Pb2—I3ii3.2388 (14)N1—C51.375 (16)
Pb2—I2ii3.263 (2)C2—N31.331 (17)
Pb2—I23.263 (2)C2—H20.9300
I1—Pb1i3.2653 (13)N3—C41.362 (16)
N9—C81.460 (17)N3—H30.8600
N9—H9A0.8900C4—C51.318 (19)
N9—H9B0.8900C4—H40.9300
N9—H9C0.8900C5—H50.9300
C8—C71.536 (19)
I5—Pb1—I190.09 (5)C8—N9—H9C109.5
I5—Pb1—I389.89 (5)H9A—N9—H9C109.5
I1—Pb1—I388.94 (4)H9B—N9—H9C109.5
I5—Pb1—I1i95.96 (5)N9—C8—C7111.1 (11)
I1—Pb1—I1i92.18 (4)N9—C8—H8A109.4
I3—Pb1—I1i174.05 (2)C7—C8—H8A109.4
I5—Pb1—I291.62 (5)N9—C8—H8B109.4
I1—Pb1—I2175.04 (2)C7—C8—H8B109.4
I3—Pb1—I286.41 (4)H8A—C8—H8B108.0
I1i—Pb1—I292.27 (4)C6—C7—C8116.4 (12)
I5—Pb1—I4172.82 (3)C6—C7—H7A108.2
I1—Pb1—I494.09 (5)C8—C7—H7A108.2
I3—Pb1—I484.36 (5)C6—C7—H7B108.2
I1i—Pb1—I489.73 (5)C8—C7—H7B108.2
I2—Pb1—I483.75 (5)H7A—C7—H7B107.3
I4—Pb2—I4ii180.0N1—C6—C7109.8 (10)
I4—Pb2—I385.76 (4)N1—C6—H6A109.7
I4ii—Pb2—I394.24 (4)C7—C6—H6A109.7
I3—Pb2—I3ii180.0N1—C6—H6B109.7
I4ii—Pb2—I294.02 (5)C7—C6—H6B109.7
I4—Pb2—I285.98 (5)H6A—C6—H6B108.2
I3ii—Pb2—I293.10 (5)C2—N1—C5108.9 (12)
I3—Pb2—I286.90 (5)C2—N1—C6124.3 (10)
I2ii—Pb2—I2180.0C5—N1—C6126.8 (10)
I3ii—Pb2—I2ii86.90 (5)N1—C2—N3106.8 (10)
I3—Pb2—I2ii93.10 (5)N1—C2—H2126.6
I4ii—Pb2—I2ii85.98 (5)N3—C2—H2126.6
I4—Pb2—I2ii94.02 (5)C2—N3—C4110.1 (10)
I4—Pb2—I3ii94.24 (4)C2—N3—H3124.9
I4ii—Pb2—I3ii85.76 (4)C4—N3—H3124.9
Pb1—I1—Pb1i87.82 (4)C5—C4—N3106.2 (11)
Pb2—I2—Pb176.05 (4)C5—C4—H4126.9
Pb1—I3—Pb277.46 (4)N3—C4—H4126.9
Pb2—I4—Pb176.68 (5)C4—C5—N1108.0 (12)
C8—N9—H9A109.5C4—C5—H5126.0
C8—N9—H9B109.5N1—C5—H5126.0
H9A—N9—H9B109.5
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···I50.892.843.67 (2)156
N9—H9B···I2iii0.892.903.68 (2)147
N9—H9C···I5iv0.892.893.64 (2)143
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C6H13N3)2[Pb3I10]
Mr2144.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.652 (3), 11.728 (5), 11.972 (6)
α, β, γ (°)117.21 (3), 98.05 (2), 107.17 (3)
V3)976.7 (9)
Z1
Radiation typeMo Kα
µ (mm1)20.81
Crystal size (mm)0.4 × 0.2 × 0.02
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.139, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
4950, 3796, 2749
Rint0.024
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.02
No. of reflections3796
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.17, 2.09

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Pb1—I53.155 (2)Pb1—I43.309 (2)
Pb1—I13.1757 (13)Pb2—I43.2105 (15)
Pb1—I33.2264 (14)Pb2—I33.2388 (14)
Pb1—I1i3.2652 (13)Pb2—I23.263 (2)
Pb1—I23.3039 (14)
I5—Pb1—I190.09 (5)I1—Pb1—I494.09 (5)
I5—Pb1—I389.89 (5)I3—Pb1—I484.36 (5)
I1—Pb1—I388.94 (4)I1i—Pb1—I489.73 (5)
I5—Pb1—I1i95.96 (5)I2—Pb1—I483.75 (5)
I1—Pb1—I1i92.18 (4)I4ii—Pb2—I394.24 (4)
I3—Pb1—I1i174.05 (2)I4—Pb2—I285.98 (5)
I5—Pb1—I291.62 (5)I3—Pb2—I286.90 (5)
I1—Pb1—I2175.04 (2)Pb1—I1—Pb1i87.82 (4)
I3—Pb1—I286.41 (4)Pb2—I2—Pb176.05 (4)
I1i—Pb1—I292.27 (4)Pb1—I3—Pb277.46 (4)
I5—Pb1—I4172.82 (3)Pb2—I4—Pb176.68 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···I50.892.843.67 (2)155.8
N9—H9B···I2iii0.892.903.68 (2)146.5
N9—H9C···I5iv0.892.893.64 (2)143.2
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

References

First citationBilling, D. G. & Lemmerer, A. (2004). Acta Cryst. C60, m224–m226.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationDammak, T., Koubaa, M., Boukheddaden, K., Boughzala, H., Mlayah, A. & Abid, Y. (2009). J. Phys. Chem. 113, 19305–19309.  CAS
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals
First citationElleuch, S., Boughzala, H., Driss, A. & Abid, Y. (2007). Acta Cryst. E63, m306–m308.  Web of Science CSD CrossRef IUCr Journals
First citationElleuch, S., Dammak, T., Abid, Y., Mlayah, A. & Boughzala, H. (2010). J. Lumin. 130, 531–535.  CrossRef CAS
First citationGebauer, T. & Schmid, G. (1999). Z. Anorg. Allg. Chem. 625, 1124–1128.  CrossRef CAS
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationIshihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B, 42, 17, 11099–11107.
First citationKrautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104.  Web of Science CSD CrossRef
First citationMaxcy, K. R., Willett, R. D., Mitzi, D. B. & Afzali, A. (2003). Acta Cryst. E59, m364–m366.  Web of Science CSD CrossRef IUCr Journals
First citationMitzi, D. B., Chondroudis, K. & Kagan, C. R. (2001). IBM J. Res. Dev. 45, 29–45.  CrossRef CAS
First citationMousdis, G. A., Gionis, V., Papavassiliou, C. P. & Terzis, A. (1998). J. Mater. Chem. 8, 2259–2262.  CrossRef CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationPapavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265–271.  CrossRef CAS
First citationSamet Kallel, E., Boughzala, H., Driss, A. & Abid, Y. (2008). Acta Cryst. E64, m921.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m458-m459
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds