organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,6,6-Tetra­methyl-4-oxopiperidin-1-ium 4-chloro-3-nitro­benzoate

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 8 June 2011; accepted 25 June 2011; online 6 July 2011)

The title salt, C9H18NO+·C7H3ClNO4, was obtained as an unexpected product of the reaction of 4-chloro-3-nitro­benzoyl isothio­cyanate with pyrrolidine. The six-membered ring of the 4-oxopiperidinium cation adopts a chair conformation. In the crystal structure, two cations and three anions are linked together by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds and arranged diagonally along the ac face.

Related literature

For related structures, see: Wang et al. (2008[Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365-o2366.]), Smith & Wermuth (2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122.]). For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C9H18NO+·C7H3ClNO4

  • Mr = 356.80

  • Triclinic, [P \overline 1]

  • a = 7.9974 (10) Å

  • b = 10.3267 (13) Å

  • c = 11.9196 (15) Å

  • α = 109.101 (3)°

  • β = 96.785 (3)°

  • γ = 104.720 (3)°

  • V = 877.58 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.40 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.978

  • 10082 measured reflections

  • 3431 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.01

  • 3431 reflections

  • 229 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.87 (2) 1.89 (2) 2.750 (2) 165
N1—H1B⋯O2ii 0.89 (1) 1.77 (1) 2.653 (2) 171
C3—H3A⋯O4iii 0.97 2.54 3.269 (3) 132
C8—H8B⋯O3i 0.96 2.54 3.297 (3) 136
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title salt is an unexpected product of the reaction of 4-chloro-3- nitro-benzoylisothiocyanate with pyrrolidine. The expected product was N-(4-chloro-3-nitrobenzoyl)-N'-(pyrrolidin-1-yl)thiourea. The salt consists of 2,2,6,6-tetramethylpiperidinium-4-one cation and 4-chloro-3-nitrobenzoate anion (Fig.1) indicating the opening of pyrrolidine ring and involvement of acetone solvent in the reaction mechanism. The piperidinium ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and ϕ, of 0.507 (2) Å, 3.4 (3)° and 207 (6)°, respectively. The bond lengths and angles are in normal range (Allen et al., 1987) and comparable to those in piperidinium 3-hydroxy-2-naphthoate (Wang et al., 2008) and 4-carbamoylpiperidinium 5-nitrosalicylate (Smith & Wermuth, 2011). All atoms of the benzoate anion are essentially coplanar with the benzene ring except O4 and O5, which are deviated from the plane by 0.690 (2) and 0.880 (2) Å, respectively. In the crystal structure, two cations and three anions are linked together by intermolecular hydrogen bonds (symmetry codes as in Table 2) and arranged diagonally along the ac face (Fig.2).

Related literature top

For related structures, see: Wang et al. (2008); Jasinski et al. (2009), Smith & Wermuth (2011). For bond-length data, see Allen et al. (1987). For puckering parameter, see: Cremer & Pople (1975).

Experimental top

A solution of 4-chloro-3-nitrobenzoylisothiocyanate (2.42 g, 0.01 mol) in 30 ml acetone was added into a flask containing 30 ml acetone solution of pyyrolidine (0.71 g, 0.01 mol).The mixture was refluxed for 1 h. Then, the solution was filtered-off and left to evaporate at room temperature. The colourless solid was obtained after one day of evaporation (yield 83%, m.p 473.1–474.3 K).

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.96–0.98 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH2 and CH groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Hydrogen bonds are shown by dashed lines.
2,2,6,6-Tetramethyl-4-oxopiperidin-1-ium 4-chloro-3-nitrobenzoate top
Crystal data top
C9H18NO+·C7H3ClNO4Z = 2
Mr = 356.80F(000) = 376
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Melting point = 447.3–448.1 K
a = 7.9974 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3267 (13) ÅCell parameters from 1985 reflections
c = 11.9196 (15) Åθ = 1.8–26.0°
α = 109.101 (3)°µ = 0.25 mm1
β = 96.785 (3)°T = 298 K
γ = 104.720 (3)°Slab, colourless
V = 877.58 (19) Å30.40 × 0.14 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3431 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.908, Tmax = 0.978l = 1414
10082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.0942P]
where P = (Fo2 + 2Fc2)/3
3431 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H18NO+·C7H3ClNO4γ = 104.720 (3)°
Mr = 356.80V = 877.58 (19) Å3
Triclinic, P1Z = 2
a = 7.9974 (10) ÅMo Kα radiation
b = 10.3267 (13) ŵ = 0.25 mm1
c = 11.9196 (15) ÅT = 298 K
α = 109.101 (3)°0.40 × 0.14 × 0.09 mm
β = 96.785 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2268 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.978Rint = 0.030
10082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
3431 reflectionsΔρmin = 0.18 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10661 (8)0.44819 (7)0.35541 (6)0.0712 (2)
O10.1974 (3)0.1497 (2)0.57035 (16)0.0823 (6)
O20.7048 (2)0.76828 (18)0.88016 (14)0.0742 (5)
O30.7880 (2)0.93410 (17)0.80065 (14)0.0624 (5)
O40.3749 (3)0.8614 (2)0.41307 (17)0.0802 (6)
O50.3627 (3)0.6544 (2)0.28559 (16)0.0862 (6)
N10.1289 (2)0.11990 (18)0.88732 (15)0.0386 (4)
H1A0.0241 (16)0.0568 (17)0.8704 (17)0.042 (6)*
H1B0.176 (3)0.151 (2)0.9662 (10)0.052 (6)*
N20.3733 (2)0.7373 (2)0.38805 (18)0.0578 (5)
C10.2358 (3)0.0336 (2)0.81718 (18)0.0452 (5)
C20.0998 (3)0.2474 (2)0.86054 (19)0.0460 (5)
C30.0313 (3)0.1960 (3)0.7231 (2)0.0561 (6)
H3A0.08980.13260.70140.067*
H3B0.03000.27880.70190.067*
C40.1398 (3)0.1179 (3)0.6502 (2)0.0559 (6)
C50.1637 (3)0.0069 (3)0.68090 (19)0.0575 (6)
H5A0.24470.04520.63560.069*
H5B0.05050.08240.65520.069*
C60.2039 (3)0.1004 (2)0.8498 (2)0.0587 (6)
H6A0.24900.07230.93540.088*
H6B0.26360.16270.80470.088*
H6C0.07910.15040.82970.088*
C70.4326 (3)0.1167 (3)0.8553 (2)0.0642 (7)
H7A0.46880.15530.94250.096*
H7B0.45500.19430.82590.096*
H7C0.49840.05320.82160.096*
C80.0406 (3)0.2880 (3)0.9280 (2)0.0639 (7)
H8A0.00560.32211.01410.096*
H8B0.14350.20500.90450.096*
H8C0.07230.36270.90800.096*
C90.2697 (3)0.3757 (2)0.9055 (2)0.0682 (7)
H9A0.32080.39430.98850.102*
H9B0.24250.45930.90060.102*
H9C0.35250.35410.85580.102*
C100.4375 (3)0.5931 (2)0.67661 (19)0.0457 (5)
H10A0.45470.56050.73980.055*
C110.5459 (2)0.7263 (2)0.68617 (17)0.0379 (5)
C120.5203 (2)0.7728 (2)0.59146 (17)0.0410 (5)
H12A0.59100.86220.59680.049*
C130.3893 (3)0.6860 (2)0.48870 (18)0.0419 (5)
C140.2792 (3)0.5541 (2)0.47945 (18)0.0442 (5)
C150.3041 (3)0.5083 (2)0.5742 (2)0.0501 (5)
H15A0.23110.42000.56960.060*
C160.6921 (3)0.8182 (2)0.79869 (18)0.0444 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (4)0.0709 (4)0.0599 (4)0.0018 (3)0.0096 (3)0.0004 (3)
O10.0921 (14)0.1105 (15)0.0579 (11)0.0264 (11)0.0259 (10)0.0492 (11)
O20.0933 (13)0.0718 (11)0.0368 (9)0.0035 (10)0.0101 (8)0.0193 (8)
O30.0499 (9)0.0538 (10)0.0625 (10)0.0038 (8)0.0101 (8)0.0179 (8)
O40.0923 (14)0.0673 (12)0.0808 (13)0.0234 (10)0.0083 (10)0.0380 (10)
O50.1131 (16)0.0961 (14)0.0418 (10)0.0258 (12)0.0073 (10)0.0245 (10)
N10.0376 (10)0.0401 (10)0.0317 (9)0.0051 (8)0.0009 (8)0.0127 (8)
N20.0518 (12)0.0640 (14)0.0517 (13)0.0125 (10)0.0058 (9)0.0241 (11)
C10.0452 (12)0.0525 (13)0.0394 (11)0.0177 (10)0.0074 (9)0.0178 (10)
C20.0479 (12)0.0425 (12)0.0479 (12)0.0111 (9)0.0079 (10)0.0203 (10)
C30.0547 (14)0.0666 (15)0.0555 (14)0.0179 (12)0.0054 (11)0.0369 (12)
C40.0526 (13)0.0719 (16)0.0384 (12)0.0106 (12)0.0014 (10)0.0240 (11)
C50.0676 (16)0.0656 (15)0.0383 (12)0.0252 (12)0.0132 (11)0.0142 (11)
C60.0660 (15)0.0537 (14)0.0607 (15)0.0240 (12)0.0115 (12)0.0234 (12)
C70.0469 (14)0.0842 (18)0.0701 (16)0.0235 (13)0.0146 (12)0.0365 (14)
C80.0691 (16)0.0586 (15)0.0727 (17)0.0284 (13)0.0236 (13)0.0263 (13)
C90.0698 (17)0.0487 (14)0.0756 (18)0.0016 (12)0.0062 (13)0.0262 (13)
C100.0469 (12)0.0481 (12)0.0415 (12)0.0116 (10)0.0106 (9)0.0178 (10)
C110.0354 (10)0.0399 (11)0.0344 (10)0.0119 (9)0.0068 (8)0.0092 (9)
C120.0361 (11)0.0389 (11)0.0426 (12)0.0084 (9)0.0056 (9)0.0120 (9)
C130.0387 (11)0.0469 (12)0.0385 (11)0.0148 (9)0.0058 (9)0.0136 (9)
C140.0341 (11)0.0445 (12)0.0416 (12)0.0106 (9)0.0043 (9)0.0030 (9)
C150.0436 (12)0.0403 (12)0.0575 (14)0.0029 (9)0.0120 (10)0.0146 (10)
C160.0414 (12)0.0472 (13)0.0357 (11)0.0133 (10)0.0015 (9)0.0068 (10)
Geometric parameters (Å, º) top
Cl1—C141.726 (2)C6—H6A0.9600
O1—C41.207 (3)C6—H6B0.9600
O2—C161.245 (3)C6—H6C0.9600
O3—C161.238 (3)C7—H7A0.9600
O4—N21.213 (2)C7—H7B0.9600
O5—N21.219 (2)C7—H7C0.9600
N1—C11.514 (3)C8—H8A0.9600
N1—C21.517 (3)C8—H8B0.9600
N1—H1A0.874 (9)C8—H8C0.9600
N1—H1B0.888 (9)C9—H9A0.9600
N2—C131.467 (3)C9—H9B0.9600
C1—C71.520 (3)C9—H9C0.9600
C1—C61.524 (3)C10—C151.383 (3)
C1—C51.536 (3)C10—C111.387 (3)
C2—C81.521 (3)C10—H10A0.9300
C2—C31.529 (3)C11—C121.377 (3)
C2—C91.529 (3)C11—C161.516 (3)
C3—C41.494 (3)C12—C131.379 (3)
C3—H3A0.9700C12—H12A0.9300
C3—H3B0.9700C13—C141.383 (3)
C4—C51.499 (3)C14—C151.372 (3)
C5—H5A0.9700C15—H15A0.9300
C5—H5B0.9700
C1—N1—C2120.56 (16)H6B—C6—H6C109.5
C1—N1—H1A103.8 (13)C1—C7—H7A109.5
C2—N1—H1A106.4 (13)C1—C7—H7B109.5
C1—N1—H1B108.5 (14)H7A—C7—H7B109.5
C2—N1—H1B107.7 (13)C1—C7—H7C109.5
H1A—N1—H1B109.6 (19)H7A—C7—H7C109.5
O4—N2—O5124.2 (2)H7B—C7—H7C109.5
O4—N2—C13117.4 (2)C2—C8—H8A109.5
O5—N2—C13118.4 (2)C2—C8—H8B109.5
N1—C1—C7111.61 (17)H8A—C8—H8B109.5
N1—C1—C6105.17 (17)C2—C8—H8C109.5
C7—C1—C6109.29 (17)H8A—C8—H8C109.5
N1—C1—C5107.97 (16)H8B—C8—H8C109.5
C7—C1—C5111.59 (19)C2—C9—H9A109.5
C6—C1—C5111.04 (18)C2—C9—H9B109.5
N1—C2—C8105.96 (17)H9A—C9—H9B109.5
N1—C2—C3107.28 (17)C2—C9—H9C109.5
C8—C2—C3110.62 (19)H9A—C9—H9C109.5
N1—C2—C9111.61 (17)H9B—C9—H9C109.5
C8—C2—C9109.71 (19)C15—C10—C11120.8 (2)
C3—C2—C9111.51 (19)C15—C10—H10A119.6
C4—C3—C2113.43 (18)C11—C10—H10A119.6
C4—C3—H3A108.9C12—C11—C10119.08 (18)
C2—C3—H3A108.9C12—C11—C16120.59 (18)
C4—C3—H3B108.9C10—C11—C16120.33 (18)
C2—C3—H3B108.9C11—C12—C13119.65 (19)
H3A—C3—H3B107.7C11—C12—H12A120.2
O1—C4—C3122.5 (2)C13—C12—H12A120.2
O1—C4—C5123.1 (2)C12—C13—C14121.47 (19)
C3—C4—C5114.4 (2)C12—C13—N2117.49 (18)
C4—C5—C1113.22 (18)C14—C13—N2121.03 (18)
C4—C5—H5A108.9C15—C14—C13118.79 (19)
C1—C5—H5A108.9C15—C14—Cl1118.87 (17)
C4—C5—H5B108.9C13—C14—Cl1122.29 (17)
C1—C5—H5B108.9C14—C15—C10120.2 (2)
H5A—C5—H5B107.7C14—C15—H15A119.9
C1—C6—H6A109.5C10—C15—H15A119.9
C1—C6—H6B109.5O3—C16—O2126.28 (19)
H6A—C6—H6B109.5O3—C16—C11117.47 (19)
C1—C6—H6C109.5O2—C16—C11116.24 (19)
H6A—C6—H6C109.5
C2—N1—C1—C773.0 (2)C16—C11—C12—C13178.44 (17)
C2—N1—C1—C6168.64 (17)C11—C12—C13—C141.6 (3)
C2—N1—C1—C550.0 (2)C11—C12—C13—N2177.04 (18)
C1—N1—C2—C8168.99 (17)O4—N2—C13—C1247.1 (3)
C1—N1—C2—C350.8 (2)O5—N2—C13—C12131.6 (2)
C1—N1—C2—C971.6 (2)O4—N2—C13—C14134.3 (2)
N1—C2—C3—C449.4 (2)O5—N2—C13—C1447.1 (3)
C8—C2—C3—C4164.50 (19)C12—C13—C14—C151.2 (3)
C9—C2—C3—C473.1 (3)N2—C13—C14—C15177.42 (19)
C2—C3—C4—O1128.3 (2)C12—C13—C14—Cl1176.34 (15)
C2—C3—C4—C554.4 (3)N2—C13—C14—Cl15.0 (3)
O1—C4—C5—C1129.6 (2)C13—C14—C15—C100.2 (3)
C3—C4—C5—C153.1 (3)Cl1—C14—C15—C10177.79 (16)
N1—C1—C5—C447.4 (2)C11—C10—C15—C141.1 (3)
C7—C1—C5—C475.6 (2)C12—C11—C16—O31.2 (3)
C6—C1—C5—C4162.25 (19)C10—C11—C16—O3177.94 (19)
C15—C10—C11—C120.7 (3)C12—C11—C16—O2179.46 (19)
C15—C10—C11—C16179.79 (18)C10—C11—C16—O21.4 (3)
C10—C11—C12—C130.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.87 (2)1.89 (2)2.750 (2)165
N1—H1B···O2ii0.89 (1)1.77 (1)2.653 (2)171
C3—H3A···O4iii0.972.543.269 (3)132
C8—H8B···O3i0.962.543.297 (3)136
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H18NO+·C7H3ClNO4
Mr356.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9974 (10), 10.3267 (13), 11.9196 (15)
α, β, γ (°)109.101 (3), 96.785 (3), 104.720 (3)
V3)877.58 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.908, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
10082, 3431, 2268
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.01
No. of reflections3431
No. of parameters229
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.874 (16)1.894 (16)2.750 (2)165
N1—H1B···O2ii0.887 (12)1.773 (13)2.653 (2)171
C3—H3A···O4iii0.972.543.269 (3)132
C8—H8B···O3i0.962.543.297 (3)136
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grants UKM-GUP-NBT– 08–27–110.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds