metal-organic compounds
catena-Poly[(dichloridocadmium)-di-μ-chlorido-[bis(morpholinium-κO)cadmium]-di-μ-chlorido]
aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wxwang_1109@163.com
In the title compound, [Cd2Cl6(C4H10NO)2]n, the coordination geometry of each CdII ion is distorted octahedral, but with quite different coordination environments. One CdII atom is coordinated by four Cl atoms and two O atoms from two morpholinium ligands, while the other is coordinated by six Cl atoms. Adjacent CdII atoms are interconnected alternately by paired chloride bridges, generating a chain parallel to the a axis. Interchain N—H⋯Cl interactions form a two-dimensional network.
Related literature
For general background to one-, two- and three-dimensional coordination polymers, see: Xiong et al. (1999); Ye et al. (2005); Zhao et al. (2008). For the dimeric coordination compound [(MOR)2Cu2Cl6] (MOR = morpholinium), see: Willett et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681102914X/jh2310sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681102914X/jh2310Isup2.hkl
MOR 0.87 g(1 mmol) was dissolved in ethanol,with carefully dripping hydrochloric acid 1 g(30%). After stirring 20 min, 2.5 g(.0.85 mmol)of dissolved cadmium chloride by water was mixed. Then filtering the solution to keep it cleaning. The reaction solution was cooled down to room temperature to
Colorless needlelike crystals was obtained on the tube wall after three days and of average size 0.13 x 0.28 x 0.42 mmPositional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H =0.97 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.90 Å, Uiso(H)= 1.5 Ueq(N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. View along the c axis of the packing arrangement and intermolecular hydrogen bonds for the title compound. |
[Cd2Cl6(C4H10NO)2] | F(000) = 1184 |
Mr = 613.78 | Dx = 2.283 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: p 2ac 2ab | Cell parameters from 1977 reflections |
a = 7.0496 (14) Å | θ = 3.1–27.5° |
b = 14.404 (3) Å | µ = 3.28 mm−1 |
c = 17.583 (4) Å | T = 298 K |
V = 1785.4 (7) Å3 | Needle, colourless |
Z = 4 | 0.45 × 0.30 × 0.15 mm |
Rigaku SCXmini diffractometer | 4100 independent reflections |
Radiation source: fine-focus sealed tube | 3893 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD_Profile_fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −18→18 |
Tmin = 0.319, Tmax = 0.611 | l = −22→22 |
18533 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0224P)2 + 0.3409P] where P = (Fo2 + 2Fc2)/3 |
4100 reflections | (Δ/σ)max = 0.003 |
181 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Cd2Cl6(C4H10NO)2] | V = 1785.4 (7) Å3 |
Mr = 613.78 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0496 (14) Å | µ = 3.28 mm−1 |
b = 14.404 (3) Å | T = 298 K |
c = 17.583 (4) Å | 0.45 × 0.30 × 0.15 mm |
Rigaku SCXmini diffractometer | 4100 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 3893 reflections with I > 2σ(I) |
Tmin = 0.319, Tmax = 0.611 | Rint = 0.035 |
18533 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.31 e Å−3 |
4100 reflections | Δρmin = −0.61 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.72480 (3) | 0.507712 (15) | 0.684293 (13) | 0.02333 (6) | |
Cd2 | 0.23018 (3) | 0.497301 (15) | 0.589235 (12) | 0.02517 (6) | |
Cl2 | 0.41966 (11) | 0.59933 (5) | 0.69463 (4) | 0.02457 (16) | |
Cl4 | 0.90345 (12) | 0.60740 (6) | 0.58524 (5) | 0.03148 (19) | |
Cl6 | 1.03220 (11) | 0.42036 (6) | 0.70226 (5) | 0.03077 (19) | |
Cl3 | 0.37109 (12) | 0.60596 (6) | 0.49228 (5) | 0.03157 (19) | |
Cl1 | 0.53066 (12) | 0.38288 (6) | 0.61612 (5) | 0.03188 (19) | |
O1 | 0.8396 (3) | 0.61772 (16) | 0.78576 (12) | 0.0280 (5) | |
N1 | 1.0415 (4) | 0.7015 (2) | 0.90750 (17) | 0.0360 (7) | |
H1A | 1.0127 | 0.7623 | 0.9054 | 0.043* | |
H1B | 1.1214 | 0.6928 | 0.9468 | 0.043* | |
C4 | 0.7403 (5) | 0.6518 (2) | 0.85098 (19) | 0.0347 (8) | |
H4A | 0.6266 | 0.6151 | 0.8590 | 0.042* | |
H4B | 0.7023 | 0.7156 | 0.8423 | 0.042* | |
C3 | 0.8640 (6) | 0.6466 (3) | 0.9206 (2) | 0.0425 (10) | |
H3A | 0.7963 | 0.6714 | 0.9641 | 0.051* | |
H3B | 0.8960 | 0.5824 | 0.9313 | 0.051* | |
C2 | 1.1364 (5) | 0.6735 (3) | 0.8358 (2) | 0.0386 (9) | |
H2A | 1.1879 | 0.6114 | 0.8414 | 0.046* | |
H2B | 1.2408 | 0.7155 | 0.8254 | 0.046* | |
C1 | 0.9997 (5) | 0.6753 (3) | 0.77094 (18) | 0.0325 (8) | |
H1C | 0.9576 | 0.7385 | 0.7624 | 0.039* | |
H1D | 1.0629 | 0.6539 | 0.7252 | 0.039* | |
Cl5 | 0.10021 (12) | 0.37744 (6) | 0.49674 (5) | 0.03176 (19) | |
O2 | 0.6243 (3) | 0.43396 (16) | 0.80860 (13) | 0.0319 (6) | |
C8 | 0.3919 (5) | 0.3182 (2) | 0.8424 (2) | 0.0315 (8) | |
H8A | 0.2587 | 0.3089 | 0.8541 | 0.038* | |
H8B | 0.4234 | 0.2804 | 0.7985 | 0.038* | |
C7 | 0.4274 (4) | 0.4181 (2) | 0.8249 (2) | 0.0318 (8) | |
H7A | 0.3514 | 0.4365 | 0.7815 | 0.038* | |
H7B | 0.3895 | 0.4559 | 0.8680 | 0.038* | |
C6 | 0.7363 (5) | 0.4118 (2) | 0.87368 (17) | 0.0316 (8) | |
H6A | 0.6979 | 0.4506 | 0.9161 | 0.038* | |
H6B | 0.8687 | 0.4246 | 0.8629 | 0.038* | |
N2 | 0.5099 (4) | 0.28953 (19) | 0.90858 (16) | 0.0300 (7) | |
H2C | 0.4962 | 0.2282 | 0.9165 | 0.036* | |
H2D | 0.4699 | 0.3194 | 0.9505 | 0.036* | |
C5 | 0.7142 (5) | 0.3111 (2) | 0.8952 (2) | 0.0351 (8) | |
H5A | 0.7629 | 0.2720 | 0.8547 | 0.042* | |
H5B | 0.7865 | 0.2982 | 0.9410 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01729 (11) | 0.02593 (12) | 0.02677 (12) | 0.00002 (11) | 0.00033 (8) | 0.00048 (10) |
Cd2 | 0.02531 (12) | 0.02594 (12) | 0.02425 (12) | −0.00506 (12) | −0.00041 (8) | 0.00121 (10) |
Cl2 | 0.0224 (4) | 0.0255 (4) | 0.0258 (4) | 0.0022 (3) | −0.0006 (3) | 0.0002 (3) |
Cl4 | 0.0300 (4) | 0.0365 (5) | 0.0280 (4) | 0.0000 (4) | 0.0046 (3) | 0.0075 (4) |
Cl6 | 0.0213 (4) | 0.0357 (4) | 0.0353 (5) | 0.0040 (3) | 0.0011 (3) | 0.0101 (4) |
Cl3 | 0.0338 (5) | 0.0352 (5) | 0.0256 (4) | −0.0084 (4) | 0.0023 (3) | 0.0036 (4) |
Cl1 | 0.0281 (4) | 0.0280 (4) | 0.0395 (5) | −0.0002 (3) | −0.0061 (4) | −0.0057 (4) |
O1 | 0.0246 (12) | 0.0347 (13) | 0.0246 (12) | −0.0051 (10) | 0.0029 (9) | −0.0076 (10) |
N1 | 0.0292 (16) | 0.0423 (18) | 0.0365 (17) | 0.0039 (14) | −0.0070 (14) | −0.0152 (15) |
C4 | 0.0261 (19) | 0.045 (2) | 0.0327 (18) | −0.0024 (17) | 0.0074 (16) | −0.0129 (15) |
C3 | 0.045 (2) | 0.053 (3) | 0.029 (2) | −0.007 (2) | 0.0011 (17) | −0.0127 (18) |
C2 | 0.0267 (19) | 0.051 (2) | 0.038 (2) | −0.0008 (17) | 0.0012 (16) | −0.0165 (18) |
C1 | 0.0271 (19) | 0.043 (2) | 0.027 (2) | −0.0098 (16) | 0.0036 (15) | −0.0054 (15) |
Cl5 | 0.0317 (4) | 0.0331 (4) | 0.0305 (4) | −0.0060 (4) | −0.0034 (4) | −0.0049 (4) |
O2 | 0.0229 (12) | 0.0453 (14) | 0.0276 (13) | −0.0066 (11) | −0.0028 (10) | 0.0131 (11) |
C8 | 0.0253 (18) | 0.035 (2) | 0.034 (2) | 0.0018 (15) | −0.0012 (15) | −0.0027 (16) |
C7 | 0.0211 (17) | 0.039 (2) | 0.0357 (19) | 0.0013 (15) | 0.0048 (14) | 0.0137 (16) |
C6 | 0.032 (2) | 0.0362 (18) | 0.0265 (18) | −0.0057 (16) | −0.0049 (15) | 0.0055 (13) |
N2 | 0.0386 (18) | 0.0201 (14) | 0.0312 (16) | −0.0014 (13) | 0.0028 (13) | 0.0020 (12) |
C5 | 0.036 (2) | 0.0305 (18) | 0.039 (2) | 0.0028 (17) | −0.0134 (17) | 0.0035 (15) |
Cd1—O1 | 2.520 (2) | C3—H3A | 0.9700 |
Cd1—Cl6 | 2.5257 (9) | C3—H3B | 0.9700 |
Cd1—Cl2 | 2.5301 (9) | C2—C1 | 1.494 (5) |
Cd1—O2 | 2.531 (2) | C2—H2A | 0.9700 |
Cd1—Cl1 | 2.5579 (9) | C2—H2B | 0.9700 |
Cd1—Cl4 | 2.5848 (9) | C1—H1C | 0.9700 |
Cd2—Cl3 | 2.5184 (9) | C1—H1D | 0.9700 |
Cd2—Cl5 | 2.5427 (9) | O2—C6 | 1.427 (4) |
Cd2—Cl6i | 2.6694 (9) | O2—C7 | 1.436 (4) |
Cd2—Cl2 | 2.7163 (9) | C8—N2 | 1.489 (4) |
Cd2—Cl1 | 2.7251 (10) | C8—C7 | 1.493 (5) |
Cd2—Cl4i | 2.7974 (10) | C8—H8A | 0.9700 |
Cl4—Cd2ii | 2.7974 (10) | C8—H8B | 0.9700 |
Cl6—Cd2ii | 2.6694 (9) | C7—H7A | 0.9700 |
O1—C1 | 1.424 (4) | C7—H7B | 0.9700 |
O1—C4 | 1.430 (4) | C6—C5 | 1.508 (4) |
N1—C2 | 1.482 (4) | C6—H6A | 0.9700 |
N1—C3 | 1.498 (5) | C6—H6B | 0.9700 |
N1—H1A | 0.9000 | N2—C5 | 1.492 (5) |
N1—H1B | 0.9000 | N2—H2C | 0.9000 |
C4—C3 | 1.505 (5) | N2—H2D | 0.9000 |
C4—H4A | 0.9700 | C5—H5A | 0.9700 |
C4—H4B | 0.9700 | C5—H5B | 0.9700 |
O1—Cd1—Cl6 | 87.09 (6) | N1—C3—H3A | 109.8 |
O1—Cd1—Cl2 | 83.92 (5) | C4—C3—H3A | 109.8 |
Cl6—Cd1—Cl2 | 168.61 (3) | N1—C3—H3B | 109.8 |
O1—Cd1—O2 | 75.07 (7) | C4—C3—H3B | 109.8 |
Cl6—Cd1—O2 | 85.59 (6) | H3A—C3—H3B | 108.2 |
Cl2—Cd1—O2 | 85.34 (6) | N1—C2—C1 | 110.7 (3) |
O1—Cd1—Cl1 | 161.03 (5) | N1—C2—H2A | 109.5 |
Cl6—Cd1—Cl1 | 99.64 (3) | C1—C2—H2A | 109.5 |
Cl2—Cd1—Cl1 | 86.87 (3) | N1—C2—H2B | 109.5 |
O2—Cd1—Cl1 | 87.70 (6) | C1—C2—H2B | 109.5 |
O1—Cd1—Cl4 | 88.36 (6) | H2A—C2—H2B | 108.1 |
Cl6—Cd1—Cl4 | 86.73 (3) | O1—C1—C2 | 111.2 (3) |
Cl2—Cd1—Cl4 | 99.96 (3) | O1—C1—H1C | 109.4 |
O2—Cd1—Cl4 | 162.05 (6) | C2—C1—H1C | 109.4 |
Cl1—Cd1—Cl4 | 109.60 (3) | O1—C1—H1D | 109.4 |
Cl3—Cd2—Cl5 | 97.53 (3) | C2—C1—H1D | 109.4 |
Cl3—Cd2—Cl6i | 165.51 (3) | H1C—C1—H1D | 108.0 |
Cl5—Cd2—Cl6i | 90.34 (3) | C6—O2—C7 | 109.9 (2) |
Cl3—Cd2—Cl2 | 86.08 (3) | C6—O2—Cd1 | 129.16 (18) |
Cl5—Cd2—Cl2 | 168.80 (3) | C7—O2—Cd1 | 120.65 (18) |
Cl6i—Cd2—Cl2 | 88.50 (3) | N2—C8—C7 | 109.5 (3) |
Cl3—Cd2—Cl1 | 100.76 (3) | N2—C8—H8A | 109.8 |
Cl5—Cd2—Cl1 | 88.88 (3) | C7—C8—H8A | 109.8 |
Cl6i—Cd2—Cl1 | 91.50 (3) | N2—C8—H8B | 109.8 |
Cl2—Cd2—Cl1 | 80.02 (3) | C7—C8—H8B | 109.8 |
Cl3—Cd2—Cl4i | 87.45 (3) | H8A—C8—H8B | 108.2 |
Cl5—Cd2—Cl4i | 94.14 (3) | O2—C7—C8 | 110.9 (3) |
Cl6i—Cd2—Cl4i | 79.84 (3) | O2—C7—H7A | 109.5 |
Cl2—Cd2—Cl4i | 96.62 (3) | C8—C7—H7A | 109.5 |
Cl1—Cd2—Cl4i | 170.83 (3) | O2—C7—H7B | 109.5 |
Cd1—Cl2—Cd2 | 94.98 (3) | C8—C7—H7B | 109.5 |
Cd1—Cl4—Cd2ii | 93.98 (3) | H7A—C7—H7B | 108.1 |
Cd1—Cl6—Cd2ii | 98.55 (3) | O2—C6—C5 | 111.1 (3) |
Cd1—Cl1—Cd2 | 94.13 (3) | O2—C6—H6A | 109.4 |
C1—O1—C4 | 109.6 (2) | C5—C6—H6A | 109.4 |
C1—O1—Cd1 | 119.39 (18) | O2—C6—H6B | 109.4 |
C4—O1—Cd1 | 128.78 (19) | C5—C6—H6B | 109.4 |
C2—N1—C3 | 111.4 (3) | H6A—C6—H6B | 108.0 |
C2—N1—H1A | 109.4 | C8—N2—C5 | 111.0 (3) |
C3—N1—H1A | 109.4 | C8—N2—H2C | 109.4 |
C2—N1—H1B | 109.4 | C5—N2—H2C | 109.4 |
C3—N1—H1B | 109.4 | C8—N2—H2D | 109.4 |
H1A—N1—H1B | 108.0 | C5—N2—H2D | 109.4 |
O1—C4—C3 | 110.6 (3) | H2C—N2—H2D | 108.0 |
O1—C4—H4A | 109.5 | N2—C5—C6 | 109.8 (3) |
C3—C4—H4A | 109.5 | N2—C5—H5A | 109.7 |
O1—C4—H4B | 109.5 | C6—C5—H5A | 109.7 |
C3—C4—H4B | 109.5 | N2—C5—H5B | 109.7 |
H4A—C4—H4B | 108.1 | C6—C5—H5B | 109.7 |
N1—C3—C4 | 109.5 (3) | H5A—C5—H5B | 108.2 |
O1—Cd1—Cl2—Cd2 | −178.93 (5) | Cl4—Cd1—O1—C1 | −20.0 (2) |
Cl6—Cd1—Cl2—Cd2 | −140.85 (12) | Cl6—Cd1—O1—C4 | −132.1 (3) |
O2—Cd1—Cl2—Cd2 | −103.48 (6) | Cl2—Cd1—O1—C4 | 40.9 (3) |
Cl1—Cd1—Cl2—Cd2 | −15.53 (3) | O2—Cd1—O1—C4 | −45.9 (3) |
Cl4—Cd1—Cl2—Cd2 | 93.82 (3) | Cl1—Cd1—O1—C4 | −20.5 (4) |
Cl3—Cd2—Cl2—Cd1 | −86.89 (3) | Cl4—Cd1—O1—C4 | 141.1 (3) |
Cl5—Cd2—Cl2—Cd1 | 22.39 (15) | C1—O1—C4—C3 | −63.0 (4) |
Cl6i—Cd2—Cl2—Cd1 | 106.55 (3) | Cd1—O1—C4—C3 | 134.4 (3) |
Cl1—Cd2—Cl2—Cd1 | 14.76 (3) | C2—N1—C3—C4 | −52.2 (4) |
Cl4i—Cd2—Cl2—Cd1 | −173.86 (2) | O1—C4—C3—N1 | 57.9 (4) |
O1—Cd1—Cl4—Cd2ii | 94.39 (6) | C3—N1—C2—C1 | 51.6 (4) |
Cl6—Cd1—Cl4—Cd2ii | 7.21 (3) | C4—O1—C1—C2 | 62.0 (4) |
Cl2—Cd1—Cl4—Cd2ii | 177.92 (2) | Cd1—O1—C1—C2 | −133.6 (2) |
O2—Cd1—Cl4—Cd2ii | 72.00 (19) | N1—C2—C1—O1 | −56.4 (4) |
Cl1—Cd1—Cl4—Cd2ii | −91.87 (3) | O1—Cd1—O2—C6 | −53.8 (2) |
O1—Cd1—Cl6—Cd2ii | −96.14 (6) | Cl6—Cd1—O2—C6 | 34.3 (2) |
Cl2—Cd1—Cl6—Cd2ii | −134.03 (12) | Cl2—Cd1—O2—C6 | −138.8 (2) |
O2—Cd1—Cl6—Cd2ii | −171.38 (6) | Cl1—Cd1—O2—C6 | 134.2 (2) |
Cl1—Cd1—Cl6—Cd2ii | 101.71 (3) | Cl4—Cd1—O2—C6 | −30.6 (4) |
Cl4—Cd1—Cl6—Cd2ii | −7.62 (3) | O1—Cd1—O2—C7 | 118.8 (2) |
O1—Cd1—Cl1—Cd2 | 76.43 (18) | Cl6—Cd1—O2—C7 | −153.1 (2) |
Cl6—Cd1—Cl1—Cd2 | −173.94 (3) | Cl2—Cd1—O2—C7 | 33.9 (2) |
Cl2—Cd1—Cl1—Cd2 | 15.46 (3) | Cl1—Cd1—O2—C7 | −53.2 (2) |
O2—Cd1—Cl1—Cd2 | 100.92 (6) | Cl4—Cd1—O2—C7 | 142.0 (2) |
Cl4—Cd1—Cl1—Cd2 | −84.00 (3) | C6—O2—C7—C8 | −62.2 (4) |
Cl3—Cd2—Cl1—Cd1 | 69.44 (3) | Cd1—O2—C7—C8 | 123.8 (2) |
Cl5—Cd2—Cl1—Cd1 | 166.90 (3) | N2—C8—C7—O2 | 58.5 (4) |
Cl6i—Cd2—Cl1—Cd1 | −102.80 (3) | C7—O2—C6—C5 | 61.0 (4) |
Cl2—Cd2—Cl1—Cd1 | −14.58 (3) | Cd1—O2—C6—C5 | −125.7 (3) |
Cl6—Cd1—O1—C1 | 66.8 (2) | C7—C8—N2—C5 | −54.2 (4) |
Cl2—Cd1—O1—C1 | −120.2 (2) | C8—N2—C5—C6 | 53.1 (4) |
O2—Cd1—O1—C1 | 153.0 (2) | O2—C6—C5—N2 | −56.5 (4) |
Cl1—Cd1—O1—C1 | 178.43 (19) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl5iii | 0.90 | 2.52 | 3.203 (3) | 133 |
N1—H1A···Cl6iv | 0.90 | 2.98 | 3.733 (4) | 143 |
N1—H1B···Cl5v | 0.90 | 2.38 | 3.183 (3) | 149 |
N2—H2C···Cl3vi | 0.90 | 2.56 | 3.276 (3) | 137 |
N2—H2C···Cl2vi | 0.90 | 2.76 | 3.323 (3) | 122 |
N2—H2D···Cl3vii | 0.90 | 2.73 | 3.413 (3) | 133 |
N2—H2D···Cl4v | 0.90 | 2.74 | 3.497 (3) | 142 |
Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) −x+2, y+1/2, −z+3/2; (v) −x+3/2, −y+1, z+1/2; (vi) −x+1, y−1/2, −z+3/2; (vii) −x+1/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd2Cl6(C4H10NO)2] |
Mr | 613.78 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 7.0496 (14), 14.404 (3), 17.583 (4) |
V (Å3) | 1785.4 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.28 |
Crystal size (mm) | 0.45 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.319, 0.611 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18533, 4100, 3893 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.051, 1.07 |
No. of reflections | 4100 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.61 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl5i | 0.90 | 2.52 | 3.203 (3) | 133.2 |
N1—H1A···Cl6ii | 0.90 | 2.98 | 3.733 (4) | 142.6 |
N1—H1B···Cl5iii | 0.90 | 2.38 | 3.183 (3) | 149.3 |
N2—H2C···Cl3iv | 0.90 | 2.56 | 3.276 (3) | 137.1 |
N2—H2C···Cl2iv | 0.90 | 2.76 | 3.323 (3) | 121.9 |
N2—H2D···Cl3v | 0.90 | 2.73 | 3.413 (3) | 133.2 |
N2—H2D···Cl4iii | 0.90 | 2.74 | 3.497 (3) | 142.2 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+3/2, −y+1, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1/2, −y+1, z+1/2. |
Acknowledgements
This work was supported financially by the National Natural Science Foundation of China (20871028) and Jiangsu Province NSF (BK2008029).
References
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. T. (2005). Polyhedron, 24, 2222–2231. Web of Science CSD CrossRef CAS Google Scholar
Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052. Web of Science CSD CrossRef CAS Google Scholar
Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225. Web of Science PubMed CAS Google Scholar
Zhao, H., Qu, Z.-R., Ye, H. Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Currently, the area of coordination polymers has undergone much development, with the aim of designing new materials with interesting physical properties. Numerous one-, two- and three-dimensional structures have been synthesized and characterized. (Xiong, et al., 1999; Ye, et al., 2005; Zhao et al., 2008) In the present work, a reaction of MOR cations, HCl, and cadmium(II) chloride has produced a novel one-dimensional coordination polymer, in which N–H–Cl hydrogen bonds interactions aggregate the anions and cations into a two-dimensional network.
Quite different from that observed in the dimeric coordination compound of (MOR)2Cu2Cl6 (Willett et al., 2005), which links one morphine in each copper atom forming a semi-coordinate bond. The title compound [C8H20Cd2N2O2Cl6] exhibits a new coordinated mode. It is shown that two Cd centers have quite different coordination environments. The Cd1 atom is octahedrally coordinated by four Cl atoms and two O atoms from two MOR ligands. The Cd2 atom is octahedrally coordinated by six Cl atoms. Interestingly, adjacent Cd ions are interconnected alternately by paired chloride bridges to generate an infinite one-dimensional coordination chain along the a axis.The compound is assembled into layer structures via 6 kinds of N–H—Cl synthons as shown in Fig 2. Due to the interaction of N–H—Cl hydrogen bond,from which the two protons on a given NH2+ group form bifurcated hydrogen bonds, the polymer constitute a two-dimensional framework at [1 1 0].