organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2021-o2022

4-(1H-Benzimidazol-2-ylmeth­­oxy)-3-meth­­oxy­benzaldehyde tetra­hydrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 June 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound, C16H14N2O3·4H2O, the dihedral angle between the mean planes of the benzimidazole ring system and benzene ring is 2.9 (1)°. The aldehyde group is disordered over two sets of sites with refined occupancies of 0.559 (4) and 0.441 (4). In the crystal, extensive inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds in concert with weak ππ stacking inter­actions [centroid–centroid distances = 3.6104 (9), 3.6288 (9) and 3.9167 (10) Å] create a three-dimensional network.

Related literature

For the pharmaceutical and biological activity of benzimidazole compounds, see: Pujar et al. (1988[Pujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423-425.]); Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143-172.]). For plant-protective agents in the field of pest control, see: Madkour et al. (2006[Madkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon 181, 255-265.]). For related structures, see: Akkurt et al. (2011[Akkurt, M., Baktır, Z., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1088-o1089.]); Jian et al. (2003[Jian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chinese J. Struct. Chem. 22, 382-386.]); Jasinski et al. (2010[Jasinski, J. P., Braley, A. N., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2052.], 2011[Jasinski, J. P., Miller, W. M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o834-o835.]); Odabaşoğlu et al. (2007)[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199-o3200.]. For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O3·4H2O

  • Mr = 354.36

  • Triclinic, [P \overline 1]

  • a = 6.8953 (6) Å

  • b = 11.4266 (13) Å

  • c = 11.7287 (14) Å

  • α = 107.965 (10)°

  • β = 90.906 (8)°

  • γ = 91.769 (8)°

  • V = 878.32 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.35 × 0.33 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])' Tmin = 0.964, Tmax = 0.979

  • 8245 measured reflections

  • 4539 independent reflections

  • 3499 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.02

  • 4539 reflections

  • 273 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4WB⋯O5 0.84 (2) 1.98 (2) 2.809 (2) 170 (2)
O4—H4WA⋯O5i 0.87 (2) 2.04 (2) 2.880 (2) 162 (2)
O5—H5WB⋯N2 0.85 (1) 1.96 (2) 2.8003 (16) 171 (2)
O5—H5WA⋯O7ii 0.85 (2) 1.94 (2) 2.7882 (19) 171 (2)
O6—H6WA⋯O4iii 0.85 (2) 2.16 (2) 2.996 (2) 171 (3)
O6—H6WB⋯O2 0.85 (2) 2.40 (2) 3.187 (3) 154 (3)
O7—H7WB⋯O4iv 0.84 (2) 2.01 (2) 2.844 (2) 174 (2)
O7—H7WA⋯O3A 0.81 (2) 1.98 (2) 2.721 (3) 151 (2)
N1—H1N⋯O6 0.83 (1) 2.02 (1) 2.8152 (19) 160 (2)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazole ring system and its related compounds play an important role in pharmaceutical and agricultural fields due to their broad spectrum of biological activities (Pujar et al., 1988, Bouwman et al., 1990). The synthesis of novel benzimidazole derivatives remains a main focus of medicinal research. Benzimidazoles are also useful as insecticides, acaricides, nematocides, herbicides and other plant-protective agents in the field of pest control (Madkour et al., 2006). In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis. The crystal structures of some benzimidazole derivatives viz., 2-chloromethyl-1H-benzimidazole nitrate (Jian et al., 2003) and 5-methoxy-1H-benzo[d]imidazole-2(3H)-thione (Odabaşoğlu et al., 2007) have been reported. In continuation of our work on the synthesis of benzimidazole containing aldehydes and their chalcones (Jasinski et al., 2010, 2011; Akkurt et al., 2011) and in view of the importance of benzimidazoles, the title compound, (I), was synthesized and its crystal structure is reported herein.

The molecular structure of the title compound is shown in Fig. 1. In (I) the dihedral angle between the mean planes of the benzimidazole ring system and benzene ring is 2.9 (1)°. The aldehyde group is disordered over two sets of sites corresponding to a rotation of approximately 180° about the C12-C16 bond with refined occupancies of 0.441 (4) and 0.559 (4). Bond distances are in normal ranges (Allen et al., 1987). Extensive O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1) in concert with weak ππ stacking interactions (Table 2) create a 3-D network (Fig. 2).

Related literature top

For the pharmaceutical and biological activity of benzimidazole compounds, see: Pujar et al. (1988); Bouwman et al. (1990); For plant-protective agents in the field of pest control, see: Madkour et al. (2006). For related structures, see: Akkurt et al. (2011); Jian et al. (2003); Jasinski et al. (2010, 2011); Odabaşoğlu et al. (2007); For standard bond lengths, see: Allen et al. (1987).

Experimental top

Vanillin (1.52g, 0.01 mole) was dissolved in 30 mL of ethanolic KOH (0.56g, 0.01 mole) and the solution was stirred for 1 h. 2-chloromethyl-1H-benzimidazole (1.66g, 0.01 mole) was added with continuous stirring and refluxed for 5 h (Fig. 3). The reaction mixture was cooled to room temperature and poured into crushed ice. The solid products that separated out were filtered off and recrystallized in ethanol. Single crystals were grown from ethanol by the slow evaporation method which yielded the tetrahydrate of the product (m.p.: 381-382 K) with an yield of 46%.

Refinement top

The N–H atom was located in a difference Fourier map and refined isotropically with DFIX = 0.86Å. The O–H atoms were also located in differnce Fourier maps and refined isotropically with DFIX = 0.84Å and DANG = 1.35Å. DFIX and DANG commands are in the SHELXL (Sheldrick, 2008) software. The C and O atoms on the aldehyde group were refined as disordered over two sets of sites for C16/C16A and O3/O3A [occupancy ratio 0.441 (4):0.559 (4)]. All of the remaining H atoms were placed in calculated positions and refined using a riding-model approximation with C—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). The isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2 ) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines represent O—H···O, O—H···N and N—H···O hydrogen bonds.
[Figure 3] Fig. 3. Reaction scheme of the title compound, (I).
4-(1H-Benzimidazol-2-ylmethoxy)-3-methoxybenzaldehyde tetrahydrate top
Crystal data top
C16H14N2O3·4H2OZ = 2
Mr = 354.36F(000) = 376
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8953 (6) ÅCell parameters from 4026 reflections
b = 11.4266 (13) Åθ = 3.4–32.3°
c = 11.7287 (14) ŵ = 0.11 mm1
α = 107.965 (10)°T = 173 K
β = 90.906 (8)°Block, pale yellow
γ = 91.769 (8)°0.35 × 0.33 × 0.20 mm
V = 878.32 (16) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4539 independent reflections
Radiation source: Enhance (Mo) X-ray Source3499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.4°
ω scansh = 96
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)'
k = 1512
Tmin = 0.964, Tmax = 0.979l = 1415
8245 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.139P]
where P = (Fo2 + 2Fc2)/3
4539 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.25 e Å3
17 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H14N2O3·4H2Oγ = 91.769 (8)°
Mr = 354.36V = 878.32 (16) Å3
Triclinic, P1Z = 2
a = 6.8953 (6) ÅMo Kα radiation
b = 11.4266 (13) ŵ = 0.11 mm1
c = 11.7287 (14) ÅT = 173 K
α = 107.965 (10)°0.35 × 0.33 × 0.20 mm
β = 90.906 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4539 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)'
3499 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.979Rint = 0.016
8245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04917 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
4539 reflectionsΔρmin = 0.36 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25247 (16)0.50917 (9)0.48675 (9)0.0433 (3)
O20.27855 (17)0.27445 (9)0.41320 (10)0.0504 (3)
O30.3970 (4)0.1784 (3)0.0482 (2)0.0613 (10)0.441 (4)
O3A0.3989 (4)0.3155 (2)0.0763 (2)0.0688 (9)0.559 (4)
O40.1293 (2)0.86262 (11)0.38472 (13)0.0662 (4)
H4WB0.161 (3)0.8992 (19)0.4568 (14)0.079*
H4WA0.045 (3)0.9090 (19)0.3647 (19)0.079*
O50.18563 (19)0.98294 (11)0.63137 (12)0.0599 (3)
H5WB0.192 (3)0.9297 (16)0.6684 (18)0.072*
H5WA0.286 (3)1.0304 (17)0.6559 (18)0.072*
O60.1819 (3)0.33687 (14)0.6899 (2)0.0961 (6)
H6WA0.101 (3)0.276 (2)0.674 (2)0.115*
H6WB0.246 (4)0.326 (3)0.626 (2)0.115*
O70.4891 (2)0.15864 (14)0.29388 (13)0.0701 (4)
H7WB0.603 (3)0.158 (2)0.3182 (19)0.084*
H7WA0.493 (3)0.192 (2)0.2216 (14)0.084*
N10.18875 (16)0.59173 (10)0.72323 (11)0.0364 (3)
H1N0.192 (2)0.5154 (12)0.6960 (14)0.044*
N20.19911 (17)0.78893 (10)0.72974 (10)0.0386 (3)
C10.16508 (18)0.65805 (12)0.84166 (12)0.0363 (3)
C20.1383 (2)0.62248 (15)0.94340 (14)0.0462 (3)
H2A0.13490.53830.94010.055*
C30.1168 (2)0.71524 (17)1.04909 (15)0.0549 (4)
H3A0.09610.69481.12070.066*
C40.1248 (3)0.83881 (17)1.05371 (15)0.0588 (4)
H4A0.10950.90041.12850.071*
C50.1541 (2)0.87414 (14)0.95290 (14)0.0508 (4)
H5A0.16140.95860.95730.061*
C60.17285 (18)0.78171 (12)0.84452 (12)0.0375 (3)
C70.20690 (18)0.67405 (11)0.66209 (12)0.0348 (3)
C80.2316 (2)0.63843 (12)0.53048 (12)0.0407 (3)
H8A0.11710.66170.49150.049*
H8B0.34800.68160.51220.049*
C90.28517 (18)0.46020 (12)0.36761 (12)0.0352 (3)
C100.3059 (2)0.52749 (13)0.28790 (13)0.0413 (3)
H10A0.29750.61450.31520.050*
C110.3390 (2)0.46721 (14)0.16864 (13)0.0443 (3)
H11A0.35510.51320.11410.053*
C120.34859 (19)0.34084 (14)0.12823 (13)0.0418 (3)
C130.32778 (19)0.27242 (13)0.20786 (13)0.0409 (3)
H13A0.33460.18530.17960.049*
C140.29751 (18)0.33106 (12)0.32700 (13)0.0375 (3)
C150.2914 (3)0.14435 (14)0.37694 (19)0.0631 (5)
H15A0.28660.11580.44760.095*
H15B0.41390.12120.33630.095*
H15C0.18250.10630.32190.095*
C160.3765 (19)0.2805 (10)0.0036 (9)0.078 (5)0.441 (4)
H16A0.37850.33370.04470.093*0.441 (4)
C16A0.3838 (12)0.2765 (6)0.0018 (4)0.046 (2)0.559 (4)
H16B0.39590.19000.01790.055*0.559 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0595 (6)0.0317 (5)0.0400 (5)0.0043 (4)0.0048 (4)0.0129 (4)
O20.0665 (7)0.0350 (5)0.0546 (6)0.0035 (5)0.0063 (5)0.0206 (4)
O30.0618 (18)0.064 (2)0.0498 (16)0.0027 (14)0.0093 (12)0.0047 (14)
O3A0.0735 (16)0.0759 (18)0.0524 (14)0.0041 (12)0.0180 (11)0.0130 (12)
O40.0898 (10)0.0485 (7)0.0610 (8)0.0035 (6)0.0078 (7)0.0177 (6)
O50.0660 (8)0.0529 (7)0.0692 (8)0.0063 (6)0.0137 (6)0.0329 (6)
O60.0934 (13)0.0469 (8)0.1487 (18)0.0067 (8)0.0135 (11)0.0330 (10)
O70.0674 (8)0.0725 (9)0.0644 (8)0.0059 (7)0.0001 (7)0.0131 (7)
N10.0372 (6)0.0298 (5)0.0432 (6)0.0010 (4)0.0011 (4)0.0131 (5)
N20.0406 (6)0.0322 (5)0.0437 (6)0.0043 (4)0.0011 (5)0.0126 (5)
C10.0276 (6)0.0387 (6)0.0441 (7)0.0016 (5)0.0005 (5)0.0149 (5)
C20.0415 (7)0.0535 (8)0.0491 (8)0.0006 (6)0.0005 (6)0.0243 (7)
C30.0500 (9)0.0739 (11)0.0443 (8)0.0067 (8)0.0037 (7)0.0229 (8)
C40.0606 (10)0.0666 (11)0.0439 (8)0.0161 (8)0.0049 (7)0.0078 (7)
C50.0540 (9)0.0436 (8)0.0512 (9)0.0139 (7)0.0024 (7)0.0083 (7)
C60.0310 (6)0.0382 (7)0.0439 (7)0.0058 (5)0.0007 (5)0.0133 (5)
C70.0308 (6)0.0327 (6)0.0430 (7)0.0003 (5)0.0015 (5)0.0149 (5)
C80.0506 (8)0.0315 (6)0.0411 (7)0.0011 (5)0.0005 (6)0.0128 (5)
C90.0326 (6)0.0345 (6)0.0394 (7)0.0016 (5)0.0006 (5)0.0127 (5)
C100.0445 (7)0.0350 (6)0.0470 (7)0.0024 (5)0.0018 (6)0.0162 (6)
C110.0419 (7)0.0502 (8)0.0461 (8)0.0026 (6)0.0031 (6)0.0225 (6)
C120.0310 (6)0.0509 (8)0.0411 (7)0.0033 (5)0.0037 (5)0.0104 (6)
C130.0324 (6)0.0355 (6)0.0516 (8)0.0024 (5)0.0024 (6)0.0087 (6)
C140.0316 (6)0.0342 (6)0.0490 (8)0.0015 (5)0.0009 (5)0.0162 (6)
C150.0776 (12)0.0351 (8)0.0826 (13)0.0022 (8)0.0069 (10)0.0266 (8)
C160.039 (6)0.085 (9)0.116 (9)0.005 (5)0.002 (5)0.042 (7)
C16A0.042 (4)0.060 (4)0.0252 (19)0.007 (3)0.011 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C91.3609 (17)C3—H3A0.9500
O1—C81.4190 (16)C4—C51.378 (2)
O2—C141.3638 (17)C4—H4A0.9500
O2—C151.4206 (18)C5—C61.390 (2)
O3—C161.151 (8)C5—H5A0.9500
O3A—C16A1.140 (7)C7—C81.4840 (19)
O4—H4WB0.841 (15)C8—H8A0.9900
O4—H4WA0.873 (15)C8—H8B0.9900
O5—H5WB0.851 (14)C9—C101.3880 (19)
O5—H5WA0.853 (15)C9—C141.4097 (18)
O6—H6WA0.845 (16)C10—C111.381 (2)
O6—H6WB0.850 (16)C10—H10A0.9500
O7—H7WB0.838 (15)C11—C121.378 (2)
O7—H7WA0.814 (15)C11—H11A0.9500
N1—C71.3514 (16)C12—C131.397 (2)
N1—C11.3768 (18)C12—C161.430 (9)
N1—H1N0.832 (13)C12—C16A1.466 (4)
N2—C71.3110 (17)C13—C141.373 (2)
N2—C61.3881 (18)C13—H13A0.9500
C1—C21.387 (2)C15—H15A0.9800
C1—C61.4023 (18)C15—H15B0.9800
C2—C31.374 (2)C15—H15C0.9800
C2—H2A0.9500C16—H16A0.9500
C3—C41.396 (3)C16A—H16B0.9500
C9—O1—C8116.72 (10)C7—C8—H8B110.0
C14—O2—C15117.42 (13)H8A—C8—H8B108.4
H4WB—O4—H4WA105.6 (17)O1—C9—C10124.95 (12)
H5WB—O5—H5WA104.9 (17)O1—C9—C14114.89 (11)
H6WA—O6—H6WB105 (2)C10—C9—C14120.15 (13)
H7WB—O7—H7WA107.6 (19)C11—C10—C9119.63 (13)
C7—N1—C1106.93 (11)C11—C10—H10A120.2
C7—N1—H1N127.5 (11)C9—C10—H10A120.2
C1—N1—H1N125.5 (11)C12—C11—C10120.42 (13)
C7—N2—C6104.49 (11)C12—C11—H11A119.8
N1—C1—C2132.25 (13)C10—C11—H11A119.8
N1—C1—C6105.01 (11)C11—C12—C13120.31 (13)
C2—C1—C6122.74 (13)C11—C12—C16119.2 (5)
C3—C2—C1116.54 (14)C13—C12—C16120.4 (5)
C3—C2—H2A121.7C11—C12—C16A120.6 (3)
C1—C2—H2A121.7C13—C12—C16A119.1 (3)
C2—C3—C4121.51 (15)C14—C13—C12120.00 (13)
C2—C3—H3A119.2C14—C13—H13A120.0
C4—C3—H3A119.2C12—C13—H13A120.0
C5—C4—C3121.91 (16)O2—C14—C13125.26 (12)
C5—C4—H4A119.0O2—C14—C9115.26 (12)
C3—C4—H4A119.0C13—C14—C9119.48 (12)
C4—C5—C6117.59 (15)O2—C15—H15A109.5
C4—C5—H5A121.2O2—C15—H15B109.5
C6—C5—H5A121.2H15A—C15—H15B109.5
N2—C6—C5130.48 (13)O2—C15—H15C109.5
N2—C6—C1109.82 (12)H15A—C15—H15C109.5
C5—C6—C1119.70 (13)H15B—C15—H15C109.5
N2—C7—N1113.74 (12)O3—C16—C12131.0 (10)
N2—C7—C8122.82 (11)O3—C16—H16A114.5
N1—C7—C8123.43 (11)C12—C16—H16A114.5
O1—C8—C7108.39 (10)O3A—C16A—C12129.3 (5)
O1—C8—H8A110.0O3A—C16A—H16B115.4
C7—C8—H8A110.0C12—C16A—H16B115.4
O1—C8—H8B110.0
C7—N1—C1—C2179.33 (14)O1—C9—C10—C11179.95 (13)
C7—N1—C1—C60.62 (14)C14—C9—C10—C110.1 (2)
N1—C1—C2—C3179.16 (14)C9—C10—C11—C120.9 (2)
C6—C1—C2—C30.8 (2)C10—C11—C12—C130.9 (2)
C1—C2—C3—C41.0 (2)C10—C11—C12—C16177.9 (6)
C2—C3—C4—C50.1 (3)C10—C11—C12—C16A179.9 (4)
C3—C4—C5—C61.0 (3)C11—C12—C13—C140.0 (2)
C7—N2—C6—C5179.88 (14)C16—C12—C13—C14178.8 (6)
C7—N2—C6—C10.13 (14)C16A—C12—C13—C14179.0 (4)
C4—C5—C6—N2178.55 (14)C15—O2—C14—C130.1 (2)
C4—C5—C6—C11.2 (2)C15—O2—C14—C9179.54 (13)
N1—C1—C6—N20.47 (14)C12—C13—C14—O2178.79 (12)
C2—C1—C6—N2179.48 (12)C12—C13—C14—C90.8 (2)
N1—C1—C6—C5179.75 (12)O1—C9—C14—O21.17 (17)
C2—C1—C6—C50.3 (2)C10—C9—C14—O2178.85 (12)
C6—N2—C7—N10.28 (15)O1—C9—C14—C13179.18 (11)
C6—N2—C7—C8179.19 (12)C10—C9—C14—C130.81 (19)
C1—N1—C7—N20.59 (15)C11—C12—C16—O3176.2 (10)
C1—N1—C7—C8178.88 (12)C13—C12—C16—O34.9 (16)
C9—O1—C8—C7177.26 (11)C16A—C12—C16—O350 (19)
N2—C7—C8—O1174.58 (12)C11—C12—C16A—O3A3.5 (10)
N1—C7—C8—O16.00 (18)C13—C12—C16A—O3A177.5 (6)
C8—O1—C9—C102.33 (19)C16—C12—C16A—O3A51 (20)
C8—O1—C9—C14177.65 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4WB···O50.84 (2)1.98 (2)2.809 (2)170 (2)
O4—H4WA···O5i0.87 (2)2.04 (2)2.880 (2)162 (2)
O5—H5WB···N20.85 (1)1.96 (2)2.8003 (16)171 (2)
O5—H5WA···O7ii0.85 (2)1.94 (2)2.7882 (19)171 (2)
O6—H6WA···O4iii0.85 (2)2.16 (2)2.996 (2)171 (3)
O6—H6WB···O20.85 (2)2.40 (2)3.187 (3)154 (3)
O7—H7WB···O4iv0.84 (2)2.01 (2)2.844 (2)174 (2)
O7—H7WA···O3A0.81 (2)1.98 (2)2.721 (3)151 (2)
N1—H1N···O60.83 (1)2.02 (1)2.8152 (19)160 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O3·4H2O
Mr354.36
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.8953 (6), 11.4266 (13), 11.7287 (14)
α, β, γ (°)107.965 (10), 90.906 (8), 91.769 (8)
V3)878.32 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.33 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)'
Tmin, Tmax0.964, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8245, 4539, 3499
Rint0.016
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.02
No. of reflections4539
No. of parameters273
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4WB···O50.841 (15)1.976 (16)2.809 (2)170 (2)
O4—H4WA···O5i0.873 (15)2.037 (17)2.880 (2)162 (2)
O5—H5WB···N20.851 (14)1.956 (15)2.8003 (16)171 (2)
O5—H5WA···O7ii0.853 (15)1.943 (15)2.7882 (19)170.7 (19)
O6—H6WA···O4iii0.845 (16)2.159 (17)2.996 (2)171 (3)
O6—H6WB···O20.850 (16)2.40 (2)3.187 (3)154 (3)
O7—H7WB···O4iv0.838 (15)2.009 (16)2.844 (2)174 (2)
O7—H7WA···O3A0.814 (15)1.982 (17)2.721 (3)151 (2)
N1—H1N···O60.832 (13)2.018 (14)2.8152 (19)160.1 (16)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z.
Cg···Cg π stacking interactions, Cg1, Cg2 and Cg3 are the centroids of rings N1/C1/C6/N2/C7, C1-C6 and C9-C14, respectively; [Symmetry codes: (i) -x,1-y, 1-z; (ii) 1-x, 1-y, 1-z ] top
CgX···CgYCg···Cg (Å)CgX···Perp (Å)CgY···Perp (Å)
Cg1···Cg3i3.6104 (9)-3.4276 (5)-3.4041 (5)
Cg1···Cg3ii3.6288 (9)3.3426 (5)3.4101 (5)
Cg2···Cg3i3.9167 (10)-3.4841 (6)-3.4068 (5)
 

Acknowledgements

BN thanks Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for the facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAkkurt, M., Baktır, Z., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1088–o1089.  Web of Science CSD CrossRef IUCr Journals
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBouwman, E., Driessen, W. L. & Reedijk, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science
First citationJasinski, J. P., Braley, A. N., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2052.  Web of Science CSD CrossRef IUCr Journals
First citationJasinski, J. P., Miller, W. M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o834–o835.  Web of Science CSD CrossRef IUCr Journals
First citationJian, F. F., Bei, F. L., Wang, X. & Lu, L. D. (2003). Chinese J. Struct. Chem. 22, 382–386.  CAS
First citationMadkour, H. M. F., Farag, A. A., Ramses, S. S. & Ibrahiem, N. A. A. (2006). Phosphorus Sulfur Silicon 181, 255–265.  Web of Science CrossRef CAS
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3199–o3200.  Web of Science CSD CrossRef IUCr Journals
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
First citationPujar, M. A., Bharamgoudar, T. D. & Sathyanarayana, D. N. (1988). Transition Met. Chem. 13, 423–425.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2021-o2022
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds