organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of 3-nitro­anilinium chloride

aDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 12 July 2011; accepted 19 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, C6H7N2O2+·Cl, contains two independent ion pairs. A monoclinic form of the title compound with only one ion pair in the asymmetric unit has been reported previously [Ploug-Sørensen & Andersen (1986). Acta Cryst. C42, 1813–1815]. In the crystal of the title compound, the components are linked into layers parallel to (001) by inter­molecular N—H⋯Cl hydrogen bonds, with alternating hydro­philic and hydro­phobic regions.

Related literature

For the monoclinic polymorph of the title compound, see: Ploug-Sørensen & Andersen (1986)[Ploug-Sørensen, G. & Andersen, E. K. (1986). Acta Cryst. C42, 1813-1815.]. For the applications of nitro­anilines, see: Jain et al. (2005[Jain, A. K., Mehta, S. C. & Shrivastava, N. M. (2005). Ind. J. Pharmacol. 37, 395-396.]); Teng & Garito (1983[Teng, C. C. & Garito, A. F. (1983). Phys. Rev. B28, 6766-6773.]). For information on polymorphism, see: Davey (2003[Davey, R. J. (2003). Chem. Commun. pp. 1463-1467.]); Li et al. (2001[Li, N., Shanks, R. A. & Murphy, D. M. (2001). J. Cryst. Growth, 224, 128-133.]); Rodríguez-Spong et al. (2004[Rodríguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J. & Rodríguez-Hornedo, N. (2004). Adv. Drug Del. Rev. 56, 241-274.]). For hydrogen-bond motifs, see: Etter et al., (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·Cl

  • Mr = 174.59

  • Triclinic, [P \overline 1]

  • a = 6.9936 (8) Å

  • b = 7.8608 (9) Å

  • c = 14.6708 (16) Å

  • α = 87.079 (19)°

  • β = 81.813 (19)°

  • γ = 73.597 (17)°

  • V = 765.77 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 5204 measured reflections

  • 2640 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.139

  • S = 1.22

  • 2640 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯Cl2i 0.93 (4) 2.28 (4) 3.164 (4) 161 (3)
N12—H12B⋯Cl2ii 0.86 (4) 2.35 (4) 3.204 (4) 170 (3)
N12—H12C⋯Cl1iii 0.85 (4) 2.68 (4) 3.445 (5) 151 (3)
N12—H12C⋯Cl1iv 0.85 (4) 2.69 (4) 3.221 (3) 123 (3)
N22—H22A⋯Cl1 0.86 (4) 2.33 (4) 3.174 (4) 166 (3)
N22—H22B⋯Cl2 0.84 (4) 2.40 (4) 3.218 (4) 165 (3)
N22—H22C⋯Cl1v 0.93 (4) 2.21 (4) 3.138 (3) 170 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x, y+1, z; (iv) -x, -y+1, -z; (v) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nitroanilines belong to the so-called push–pull molecules due to the intramolecular charge transfer (ICT) from the –NH2 electron-donor group, through the phenyl ring, to the electron-acceptor –NO2 group. 4-Nitroaniline and 3-nitroaniline serve as the reference compounds in both, experimental and computational studies on optical nonlinearity (Teng & Garito, 1983). Also 3-Nitroaniline and its derivatives are biologically important compounds owing to the production of significant hypoglycemic as well as antihyperglycemic effects in normal and alloxan-induced diabetic rabbits (Jain et al., 2005). Organic molecules including most of pharmaceutical compounds are prone to polymorphic formation in the solid state. Variations in crystallization environment (e.g., solvent, temperature, using as additives and concentration), can cause the same molecules to pack differently and form different crystal lattices or polymorphs (Davey, 2003). As a result, the physical, chemical and mechanical properties of crystals can be dramatically affected (Li et al., 2001). It is now widely appreciated that the occurrence of polymorphism in molecular crystalline solids impacts on the production of fine chemical products such as pharmaceuticals, pigments and photographic couplers (Rodríguez-Spong et al., 2004).

The title compound, (I), crystallizes with two crystallographically independent 3-nitroanilinium cations and two chloride anions in the asymmetric unit of the triclic unit cell, with the spacegroup P1. A monoclinic form with space group P21/c has been previously reported by Ploug-Sørensen & Andersen (1986). In the title compound the nitro groups of the cations are twisted from the plane of the aromatic rings by 0.32 (3) and 7.1 (3)°. The protonation on the N atom of the cations are confirmed from the elongated C—N bond distances.

The crystal packing, is stabilized through intermolecular N—H···Cl interactions, as shown in Fig. 2 and hydrogen bond parameters are listed in Table 1. All ammonium H atoms of the cations are involved in the hydrogen bonds with the chloride anions. The cations and anions are connected to form R42(8) ring motifs (Etter et al., 1990). Overall, the components are linked into two-dimensional layers parallel to (001) by the intermolecular N—H···Cl hydrogen bonds. This type of aggregation forms alternating hydrophilic and hydrophobic regions.

Related literature top

For the monoclinic polymorph of the title compound, see: Ploug-Sørensen & Andersen (1986). For the applications of nitroanilines, see: Jain et al. (2005); Teng & Garito (1983). For information on polymorphism, see: Davey (2003); Li et al. (2001); Rodríguez-Spong et al. (2004). For hydrogen-bond motifs, see: Etter et al., (1990).

Experimental top

The title compound, (I), was crystallized from an aqueous mixture of 3-nitroaniline and hydrochloric acid in the stochiometric ratio of 1:1 at room temperature, by the technique of slow evaporation.

Refinement top

The H atoms, which participate in hydrogen bonds, were located in difference Fourier maps and then refined isotropically [N—H = 0.84 (4) - 0.93 (4)Å]. H atoms bonded to C atoms were treated in a riding-model approximation, with d(C—H) = 0.93 Å and Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% displacement ellipsoids. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a-axis. H-bonds are shown as dashed lines.
3-nitroanilinium chloride top
Crystal data top
C6H7N2O2+·ClZ = 4
Mr = 174.59F(000) = 360
Triclinic, P1Dx = 1.514 Mg m3
Dm = 1.49 (1) Mg m3
Dm measured by flotation technique using a liquid-mixture of xylene and bromoform
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9936 (8) ÅCell parameters from 2545 reflections
b = 7.8608 (9) Åθ = 2.7–24.9°
c = 14.6708 (16) ŵ = 0.45 mm1
α = 87.079 (19)°T = 293 K
β = 81.813 (19)°Block, colourless
γ = 73.597 (17)°0.21 × 0.18 × 0.13 mm
V = 765.77 (15) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
ω scansh = 88
5204 measured reflectionsk = 99
2640 independent reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.295P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H7N2O2+·Clγ = 73.597 (17)°
Mr = 174.59V = 765.77 (15) Å3
Triclinic, P1Z = 4
a = 6.9936 (8) ÅMo Kα radiation
b = 7.8608 (9) ŵ = 0.45 mm1
c = 14.6708 (16) ÅT = 293 K
α = 87.079 (19)°0.21 × 0.18 × 0.13 mm
β = 81.813 (19)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2348 reflections with I > 2σ(I)
5204 measured reflectionsRint = 0.028
2640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 0.34 e Å3
2640 reflectionsΔρmin = 0.28 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1251 (3)0.4363 (3)0.31823 (15)0.0340 (5)
C120.0920 (3)0.4668 (3)0.22728 (16)0.0343 (5)
H120.06900.38050.19260.041*
C130.0947 (3)0.6318 (3)0.19058 (15)0.0329 (5)
C140.1270 (4)0.7610 (3)0.24223 (17)0.0407 (6)
H140.12770.87120.21610.049*
C150.1582 (4)0.7248 (3)0.33299 (18)0.0450 (6)
H150.17940.81150.36800.054*
C160.1582 (4)0.5611 (3)0.37241 (16)0.0402 (6)
H160.17980.53590.43330.048*
N110.1259 (3)0.2612 (3)0.35946 (15)0.0443 (5)
N120.0565 (4)0.6733 (4)0.09503 (14)0.0433 (5)
O110.0976 (3)0.1510 (2)0.31125 (15)0.0622 (6)
O120.1539 (4)0.2351 (3)0.43994 (14)0.0702 (6)
H12A0.155 (6)0.594 (5)0.057 (3)0.074 (11)*
H12B0.057 (6)0.654 (5)0.090 (2)0.062 (10)*
H12C0.041 (5)0.780 (6)0.078 (2)0.066 (10)*
C210.6344 (3)0.1548 (3)0.33773 (16)0.0390 (5)
C220.6145 (3)0.2222 (3)0.24981 (16)0.0359 (5)
H220.61940.33730.23430.043*
C230.5868 (3)0.1109 (3)0.18579 (15)0.0346 (5)
C240.5814 (4)0.0610 (3)0.20828 (18)0.0418 (6)
H240.56150.13330.16440.050*
C250.6059 (4)0.1238 (3)0.29679 (19)0.0483 (6)
H250.60460.23980.31190.058*
C260.6322 (4)0.0168 (4)0.36326 (18)0.0467 (6)
H260.64790.05860.42300.056*
N210.6556 (3)0.2741 (4)0.40805 (15)0.0525 (6)
N220.5575 (4)0.1777 (3)0.09240 (14)0.0415 (5)
O210.6745 (3)0.4197 (3)0.38419 (14)0.0624 (6)
O220.6531 (5)0.2192 (4)0.48732 (15)0.0940 (9)
H22A0.443 (6)0.170 (4)0.081 (2)0.060 (9)*
H22B0.565 (5)0.282 (6)0.082 (2)0.066 (10)*
H22C0.653 (5)0.099 (5)0.052 (2)0.064 (10)*
Cl10.16411 (10)0.07512 (8)0.06132 (4)0.0449 (2)
Cl20.66659 (10)0.55025 (8)0.07206 (4)0.0456 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0354 (11)0.0281 (11)0.0384 (12)0.0096 (9)0.0047 (9)0.0038 (9)
C120.0376 (11)0.0300 (11)0.0375 (12)0.0115 (9)0.0070 (9)0.0025 (9)
C130.0366 (11)0.0342 (12)0.0294 (11)0.0105 (9)0.0082 (9)0.0015 (9)
C140.0536 (14)0.0324 (12)0.0421 (13)0.0198 (11)0.0116 (10)0.0032 (10)
C150.0637 (16)0.0397 (14)0.0403 (13)0.0232 (12)0.0165 (11)0.0025 (10)
C160.0499 (13)0.0425 (14)0.0311 (12)0.0144 (11)0.0124 (10)0.0004 (10)
N110.0487 (12)0.0341 (11)0.0473 (12)0.0100 (9)0.0027 (9)0.0072 (9)
N120.0573 (15)0.0438 (14)0.0309 (11)0.0155 (11)0.0120 (10)0.0033 (10)
O110.0871 (15)0.0324 (10)0.0710 (14)0.0237 (10)0.0098 (11)0.0011 (9)
O120.1004 (17)0.0584 (13)0.0515 (13)0.0222 (12)0.0179 (11)0.0240 (10)
C210.0371 (12)0.0486 (15)0.0345 (12)0.0157 (10)0.0079 (9)0.0003 (10)
C220.0393 (12)0.0351 (12)0.0375 (12)0.0162 (10)0.0070 (9)0.0008 (10)
C230.0371 (11)0.0364 (12)0.0327 (12)0.0133 (9)0.0069 (9)0.0005 (9)
C240.0460 (13)0.0338 (13)0.0485 (14)0.0153 (10)0.0058 (10)0.0041 (10)
C250.0528 (15)0.0341 (13)0.0586 (17)0.0151 (11)0.0074 (12)0.0091 (12)
C260.0460 (13)0.0542 (17)0.0400 (13)0.0152 (12)0.0088 (10)0.0128 (12)
N210.0545 (13)0.0720 (17)0.0382 (12)0.0250 (12)0.0122 (9)0.0082 (11)
N220.0571 (14)0.0388 (13)0.0344 (11)0.0197 (11)0.0118 (10)0.0009 (9)
O210.0782 (14)0.0563 (13)0.0612 (13)0.0270 (11)0.0155 (10)0.0136 (10)
O220.148 (3)0.122 (2)0.0384 (12)0.071 (2)0.0319 (13)0.0052 (13)
Cl10.0625 (4)0.0418 (4)0.0377 (4)0.0221 (3)0.0173 (3)0.0055 (3)
Cl20.0646 (4)0.0358 (4)0.0433 (4)0.0214 (3)0.0147 (3)0.0000 (3)
Geometric parameters (Å, º) top
C11—C161.381 (4)C21—C221.380 (4)
C11—C121.384 (4)C21—C261.385 (4)
C11—N111.473 (3)C21—N211.478 (4)
C12—C131.383 (3)C22—C231.384 (3)
C12—H120.9300C22—H220.9300
C13—C141.383 (3)C23—C241.384 (4)
C13—N121.468 (3)C23—N221.463 (3)
C14—C151.382 (4)C24—C251.382 (4)
C14—H140.9300C24—H240.9300
C15—C161.383 (4)C25—C261.383 (4)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
N11—O111.221 (3)N21—O211.217 (3)
N11—O121.222 (3)N21—O221.219 (3)
N12—H12A0.93 (4)N22—H22A0.86 (4)
N12—H12B0.86 (4)N22—H22B0.84 (4)
N12—H12C0.85 (4)N22—H22C0.93 (4)
C16—C11—C12123.5 (2)C22—C21—C26123.4 (2)
C16—C11—N11118.2 (2)C22—C21—N21117.8 (2)
C12—C11—N11118.3 (2)C26—C21—N21118.9 (2)
C13—C12—C11116.7 (2)C21—C22—C23117.0 (2)
C13—C12—H12121.6C21—C22—H22121.5
C11—C12—H12121.6C23—C22—H22121.5
C12—C13—C14121.8 (2)C24—C23—C22121.8 (2)
C12—C13—N12119.2 (2)C24—C23—N22118.9 (2)
C14—C13—N12118.9 (2)C22—C23—N22119.2 (2)
C15—C14—C13119.3 (2)C25—C24—C23119.2 (2)
C15—C14—H14120.3C25—C24—H24120.4
C13—C14—H14120.3C23—C24—H24120.4
C14—C15—C16120.8 (2)C24—C25—C26121.1 (2)
C14—C15—H15119.6C24—C25—H25119.5
C16—C15—H15119.6C26—C25—H25119.5
C11—C16—C15117.8 (2)C25—C26—C21117.6 (2)
C11—C16—H16121.1C25—C26—H26121.2
C15—C16—H16121.1C21—C26—H26121.2
O11—N11—O12123.8 (2)O21—N21—O22123.9 (2)
O11—N11—C11118.0 (2)O21—N21—C21118.9 (2)
O12—N11—C11118.2 (2)O22—N21—C21117.2 (3)
C13—N12—H12A108 (2)C23—N22—H22A109 (2)
C13—N12—H12B107 (2)C23—N22—H22B115 (2)
H12A—N12—H12B107 (3)H22A—N22—H22B110 (3)
C13—N12—H12C116 (2)C23—N22—H22C107 (2)
H12A—N12—H12C113 (3)H22A—N22—H22C105 (3)
H12B—N12—H12C104 (3)H22B—N22—H22C110 (3)
C16—C11—C12—C130.5 (3)C26—C21—C22—C231.4 (4)
N11—C11—C12—C13179.22 (19)N21—C21—C22—C23177.5 (2)
C11—C12—C13—C140.6 (3)C21—C22—C23—C240.7 (3)
C11—C12—C13—N12178.8 (2)C21—C22—C23—N22177.8 (2)
C12—C13—C14—C150.3 (4)C22—C23—C24—C250.5 (4)
N12—C13—C14—C15178.4 (2)N22—C23—C24—C25179.0 (2)
C13—C14—C15—C160.2 (4)C23—C24—C25—C261.1 (4)
C12—C11—C16—C150.1 (4)C24—C25—C26—C210.4 (4)
N11—C11—C16—C15179.7 (2)C22—C21—C26—C250.9 (4)
C14—C15—C16—C110.3 (4)N21—C21—C26—C25178.0 (2)
C16—C11—N11—O11179.6 (2)C22—C21—N21—O217.2 (3)
C12—C11—N11—O110.1 (3)C26—C21—N21—O21173.9 (2)
C16—C11—N11—O120.7 (3)C22—C21—N21—O22172.9 (3)
C12—C11—N11—O12179.5 (2)C26—C21—N21—O226.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl2i0.93 (4)2.28 (4)3.164 (4)161 (3)
N12—H12B···Cl2ii0.86 (4)2.35 (4)3.204 (4)170 (3)
N12—H12C···Cl1iii0.85 (4)2.68 (4)3.445 (5)151 (3)
N12—H12C···Cl1iv0.85 (4)2.69 (4)3.221 (3)123 (3)
N22—H22A···Cl10.86 (4)2.33 (4)3.174 (4)166 (3)
N22—H22B···Cl20.84 (4)2.40 (4)3.218 (4)165 (3)
N22—H22C···Cl1v0.93 (4)2.21 (4)3.138 (3)170 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H7N2O2+·Cl
Mr174.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9936 (8), 7.8608 (9), 14.6708 (16)
α, β, γ (°)87.079 (19), 81.813 (19), 73.597 (17)
V3)765.77 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.21 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5204, 2640, 2348
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.139, 1.22
No. of reflections2640
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl2i0.93 (4)2.28 (4)3.164 (4)161 (3)
N12—H12B···Cl2ii0.86 (4)2.35 (4)3.204 (4)170 (3)
N12—H12C···Cl1iii0.85 (4)2.68 (4)3.445 (5)151 (3)
N12—H12C···Cl1iv0.85 (4)2.69 (4)3.221 (3)123 (3)
N22—H22A···Cl10.86 (4)2.33 (4)3.174 (4)166 (3)
N22—H22B···Cl20.84 (4)2.40 (4)3.218 (4)165 (3)
N22—H22C···Cl1v0.93 (4)2.21 (4)3.138 (3)170 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y, z.
 

Acknowledgements

ST and SAB sincerely thank the Vice-Chancellor and the Management of Kalasalingam University, Anand Nagar, Krishnan Koil for their support and encouragement. SA thanks the Vice Chancellor of Anna University of Technology, Tirunelveli, for his support and encouragement.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavey, R. J. (2003). Chem. Commun. pp. 1463–1467.  Web of Science CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJain, A. K., Mehta, S. C. & Shrivastava, N. M. (2005). Ind. J. Pharmacol. 37, 395–396.  CrossRef CAS Google Scholar
First citationLi, N., Shanks, R. A. & Murphy, D. M. (2001). J. Cryst. Growth, 224, 128–133.  Web of Science CrossRef CAS Google Scholar
First citationPloug-Sørensen, G. & Andersen, E. K. (1986). Acta Cryst. C42, 1813–1815.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationRodríguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J. & Rodríguez-Hornedo, N. (2004). Adv. Drug Del. Rev. 56, 241–274.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeng, C. C. & Garito, A. F. (1983). Phys. Rev. B28, 6766–6773.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds