organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3,5-di­ethyl-1H-pyrrole-2,4-di­carboxyl­ate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zpou2011@126.com

(Received 29 June 2011; accepted 15 July 2011; online 23 July 2011)

The title pyrrole derivative, C12H17NO4, consists of a pyrrole ring with two diagonally attached meth­oxy­carbonyl groups and two diagonally attached ethyl groups. The two carbonyl groups are approximately in the same plane as the pyrrole ring, making dihedral angles of 3.50 (19) and 6.70 (19)°. In the crystal, adjacent mol­ecules are assembled into dimers in a head-to-head mode by pairs of inter­molecular N—H⋯O hydrogen bonds.

Related literature

For applications of polysubstituted pyrroles, see: Brockmann & Tour (1995[Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437-4447.]); Guilard et al. (2001[Guilard, R., Gross, C. P., Bolze, F., Jerome, F., Ou, Z. P., Shao, J. G., Fischer, J., Weiss, R. & Kadish, K. M. (2001). Inorg. Chem. 40, 4845-4855.]); Trofimov et al. (2004[Trofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. (2004). Chem. Rev. 104, 2481-2506.]). For related structures, see: Takaya et al. (2001[Takaya, H., Kojima, S. & Murahashi, S. I. (2001). Org. Lett. 3, 421-424.]). For background to complexes of pyrrole derivatives, see: Fan et al. (2008[Fan, H., Peng, J. N., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264-287.]); Ou et al. (2009[Ou, Z. P., Zhu, W. H., Zhou, F., Zhao, X. F. & Ji, X. L. (2009). Fine Chem. 26, 609-612.]); Paixão et al. (2003[Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2003). Acta Cryst. E59, o94-o96.]); Yamamoto et al. (1986[Yamamoto, N., Machida, K., Taga, T. & Ogoshi, H. (1986). Acta Cryst. C42, 1573-1576.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO4

  • Mr = 239.27

  • Monoclinic, P 21 /c

  • a = 4.4697 (7) Å

  • b = 14.616 (2) Å

  • c = 19.784 (3) Å

  • β = 90.467 (2)°

  • V = 1292.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.991

  • 6296 measured reflections

  • 2285 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.08

  • 2285 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.85 2.07 2.8773 (15) 160
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polysubstituted pyrroles have been paid much attention because of their wide application in the preparation of porphyrin (Trofimov et al., 2004), corrole (Guilard et al., 2001), and as monomers for polymer chemistry (Brockmann & Tour, 1995). In particular, 2-(alkoxycarbonyl)pyrrole derivatives have attracted intense interest in the design and synthesis of functional materials (Fan et al., 2008). The title compound was synthesized as a precursor to corrole compounds.

As shown in Fig. 1, the compound has a five-membered pyrrole ring as skeleton and four substituents. Two diagonally related methoxycarbonyl groups and two diagonally related ethyl substituents are attached to the pyrrole ring. Pairs of intermolecular N1—H1n···O4i (symmetry code i: -x + 1, -y, -z + 1) hydrogen bonds assemble adjacent molecules in a head-to-head manner, as shown in Fig. 2. All bond distances are in the normal range for this type of compound, as reported by Yamamoto et al. (1986).

Related literature top

For applications of polysubstituted pyrroles, see: Brockmann & Tour (1995); Guilard et al. (2001); Trofimov et al. (2004). For related structures, see: Takaya et al. (2001). For background to complexes of pyrrole derivatives, see: Fan et al. (2008); Ou et al. (2009); Paixão et al. (2003); Yamamoto et al. (1986).

Experimental top

The title compound was synthesized from methyl 3-oxopentanoate by a Knorr-type reaction according to the method reported by Ou et al. (2009). Single crystals were grown from ethyl alcohol by slow evaporation.

Refinement top

All the non-hydrogen atoms were refined anisotropically by full-matrix least-squares calculations on F2. All the H atoms expect H1n were placed in calculated positions with C—H distances of 0.93 and 0.96 /%A, and were refined using a riding model with Uiso(H) = 1.2Ueq(C). H1n was found in a difference map, and included using a riding model with a bond length restrained to 0.84 (1) Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two-dimensional supramolecular configuration, viewed down the a axis.
Dimethyl 3,5-diethyl-1H-pyrrole-2,4-dicarboxylate top
Crystal data top
C12H17NO4F(000) = 512
Mr = 239.27Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3745 reflections
a = 4.4697 (7) Åθ = 2.8–27.4°
b = 14.616 (2) ŵ = 0.09 mm1
c = 19.784 (3) ÅT = 298 K
β = 90.467 (2)°Block, colorless
V = 1292.4 (4) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2285 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 55
Tmin = 0.982, Tmax = 0.991k = 1517
6296 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1775P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2285 reflectionsΔρmax = 0.15 e Å3
155 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.110 (8)
Crystal data top
C12H17NO4V = 1292.4 (4) Å3
Mr = 239.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.4697 (7) ŵ = 0.09 mm1
b = 14.616 (2) ÅT = 298 K
c = 19.784 (3) Å0.20 × 0.15 × 0.10 mm
β = 90.467 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1977 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.037
6296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
2285 reflectionsΔρmin = 0.16 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0716 (4)0.06793 (13)0.67868 (10)0.0771 (5)
H1A1.18390.06620.72020.116*
H1B1.20380.08080.64190.116*
H1C0.92200.11490.68120.116*
C20.7645 (3)0.02789 (10)0.61180 (6)0.0485 (4)
C30.6201 (3)0.11655 (9)0.60495 (6)0.0429 (3)
C40.6275 (3)0.19623 (9)0.64214 (6)0.0428 (3)
C50.4354 (3)0.25896 (9)0.60761 (6)0.0440 (3)
C60.3161 (3)0.21461 (9)0.55064 (6)0.0422 (3)
C70.1103 (3)0.24441 (10)0.49502 (7)0.0504 (4)
H7A0.03050.28880.51260.060*
H7B0.00300.19200.47890.060*
C80.2772 (4)0.28646 (14)0.43641 (8)0.0753 (5)
H8A0.13700.30430.40180.113*
H8B0.41460.24250.41840.113*
H8C0.38570.33930.45190.113*
C90.3744 (3)0.35270 (11)0.62967 (7)0.0548 (4)
C100.1230 (6)0.49089 (14)0.60468 (13)0.1063 (8)
H10A0.00560.51820.56920.159*
H10B0.29920.52700.61260.159*
H10C0.00710.48820.64530.159*
C110.8015 (3)0.21297 (11)0.70625 (7)0.0530 (4)
H11A0.86380.27650.70770.064*
H11B0.98030.17540.70620.064*
C120.6215 (4)0.19160 (16)0.76897 (8)0.0802 (6)
H12A0.74150.20330.80850.120*
H12B0.56280.12840.76830.120*
H12C0.44630.22960.76980.120*
N10.4307 (2)0.12986 (7)0.55029 (5)0.0439 (3)
H1N0.39180.08970.52070.053*
O10.2088 (3)0.39946 (8)0.58509 (7)0.0858 (4)
O20.4557 (3)0.38626 (9)0.68180 (7)0.0867 (4)
O30.9285 (3)0.01959 (7)0.66768 (5)0.0619 (3)
O40.7364 (3)0.03336 (7)0.57103 (5)0.0725 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0872 (12)0.0737 (11)0.0700 (11)0.0164 (9)0.0229 (9)0.0148 (9)
C20.0557 (8)0.0537 (8)0.0361 (7)0.0007 (6)0.0071 (6)0.0027 (6)
C30.0452 (7)0.0510 (8)0.0324 (6)0.0027 (6)0.0039 (5)0.0028 (5)
C40.0428 (7)0.0518 (7)0.0337 (6)0.0065 (5)0.0008 (5)0.0004 (5)
C50.0448 (7)0.0501 (7)0.0370 (7)0.0040 (6)0.0018 (5)0.0018 (5)
C60.0426 (7)0.0485 (7)0.0356 (7)0.0011 (5)0.0022 (5)0.0011 (5)
C70.0499 (7)0.0581 (8)0.0430 (7)0.0065 (6)0.0060 (6)0.0012 (6)
C80.0784 (11)0.0967 (13)0.0507 (9)0.0129 (10)0.0038 (8)0.0251 (9)
C90.0604 (9)0.0543 (8)0.0497 (8)0.0030 (7)0.0003 (7)0.0054 (7)
C100.144 (2)0.0585 (11)0.1155 (18)0.0297 (12)0.0188 (16)0.0147 (12)
C110.0521 (8)0.0635 (9)0.0432 (8)0.0057 (7)0.0091 (6)0.0072 (6)
C120.0775 (12)0.1278 (17)0.0351 (8)0.0093 (11)0.0089 (7)0.0013 (9)
N10.0515 (7)0.0469 (6)0.0332 (6)0.0012 (5)0.0062 (5)0.0037 (4)
O10.1210 (11)0.0572 (7)0.0788 (8)0.0254 (7)0.0276 (8)0.0122 (6)
O20.1163 (11)0.0700 (8)0.0733 (8)0.0097 (7)0.0253 (7)0.0288 (6)
O30.0770 (7)0.0614 (7)0.0468 (6)0.0075 (5)0.0213 (5)0.0043 (5)
O40.1030 (9)0.0579 (7)0.0560 (7)0.0185 (6)0.0278 (6)0.0112 (5)
Geometric parameters (Å, º) top
C1—O31.446 (2)C7—H7B0.9700
C1—H1A0.9600C8—H8A0.9600
C1—H1B0.9600C8—H8B0.9600
C1—H1C0.9600C8—H8C0.9600
C2—O41.2109 (17)C9—O21.1959 (18)
C2—O31.3270 (16)C9—O11.335 (2)
C2—C31.453 (2)C10—O11.444 (2)
C3—C41.3779 (19)C10—H10A0.9600
C3—N11.3816 (16)C10—H10B0.9600
C4—C51.4266 (19)C10—H10C0.9600
C4—C111.5024 (18)C11—C121.517 (2)
C5—C61.4017 (17)C11—H11A0.9700
C5—C91.464 (2)C11—H11B0.9700
C6—N11.3404 (17)C12—H12A0.9600
C6—C71.4935 (18)C12—H12B0.9600
C7—C81.514 (2)C12—H12C0.9600
C7—H7A0.9700N1—H1N0.8457
O3—C1—H1A109.5C7—C8—H8C109.5
O3—C1—H1B109.5H8A—C8—H8C109.5
H1A—C1—H1B109.5H8B—C8—H8C109.5
O3—C1—H1C109.5O2—C9—O1121.51 (15)
H1A—C1—H1C109.5O2—C9—C5125.79 (15)
H1B—C1—H1C109.5O1—C9—C5112.69 (13)
O4—C2—O3122.75 (13)O1—C10—H10A109.5
O4—C2—C3123.61 (12)O1—C10—H10B109.5
O3—C2—C3113.64 (12)H10A—C10—H10B109.5
C4—C3—N1108.11 (12)O1—C10—H10C109.5
C4—C3—C2134.03 (12)H10A—C10—H10C109.5
N1—C3—C2117.86 (11)H10B—C10—H10C109.5
C3—C4—C5106.00 (11)C4—C11—C12112.50 (12)
C3—C4—C11126.77 (13)C4—C11—H11A109.1
C5—C4—C11127.23 (12)C12—C11—H11A109.1
C6—C5—C4108.15 (12)C4—C11—H11B109.1
C6—C5—C9127.00 (13)C12—C11—H11B109.1
C4—C5—C9124.85 (12)H11A—C11—H11B107.8
N1—C6—C5106.78 (11)C11—C12—H12A109.5
N1—C6—C7119.92 (12)C11—C12—H12B109.5
C5—C6—C7133.28 (13)H12A—C12—H12B109.5
C6—C7—C8112.23 (12)C11—C12—H12C109.5
C6—C7—H7A109.2H12A—C12—H12C109.5
C8—C7—H7A109.2H12B—C12—H12C109.5
C6—C7—H7B109.2C6—N1—C3110.97 (11)
C8—C7—H7B109.2C6—N1—H1N124.6
H7A—C7—H7B107.9C3—N1—H1N124.4
C7—C8—H8A109.5C9—O1—C10116.33 (15)
C7—C8—H8B109.5C2—O3—C1116.55 (12)
H8A—C8—H8B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.852.072.8773 (15)160
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H17NO4
Mr239.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.4697 (7), 14.616 (2), 19.784 (3)
β (°) 90.467 (2)
V3)1292.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6296, 2285, 1977
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.08
No. of reflections2285
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.852.072.8773 (15)159.5
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 21001054) and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 10KJB150003)

References

First citationBrockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447.  CrossRef CAS Web of Science
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFan, H., Peng, J. N., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108, 264–287.  Web of Science CrossRef PubMed CAS
First citationGuilard, R., Gross, C. P., Bolze, F., Jerome, F., Ou, Z. P., Shao, J. G., Fischer, J., Weiss, R. & Kadish, K. M. (2001). Inorg. Chem. 40, 4845–4855.  Web of Science CSD CrossRef PubMed CAS
First citationOu, Z. P., Zhu, W. H., Zhou, F., Zhao, X. F. & Ji, X. L. (2009). Fine Chem. 26, 609–612.  CAS
First citationPaixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2003). Acta Cryst. E59, o94–o96.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTakaya, H., Kojima, S. & Murahashi, S. I. (2001). Org. Lett. 3, 421–424.  Web of Science CSD CrossRef PubMed CAS
First citationTrofimov, B. A., Sobenina, L. N., Demenev, A. P. & Mikhaleva, A. (2004). Chem. Rev. 104, 2481–2506.  Web of Science CrossRef PubMed CAS
First citationYamamoto, N., Machida, K., Taga, T. & Ogoshi, H. (1986). Acta Cryst. C42, 1573–1576.  CSD CrossRef CAS Web of Science IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds