organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 3-[(E)-2-nitro­benzyl­­idene]di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 9 July 2011; accepted 17 July 2011; online 23 July 2011)

The title compound, C15H13N3O2S2, was obtained from a condensation reaction of benzyl dithio­carbazate and 2-nitro­benzaldehyde. In the mol­ecule, the nearly planar dithio­carbazate fragment [r.m.s deviation = 0.0264 Å] is oriented at dihedral angles of 7.25 (17) and 74.09 (9)°with respect to the two benzene rings. The nitro group is twisted by a dihedral angle of 22.4 (7)° to the attached benzene ring. The nitro­benzene ring and dithio­carbazate fragment are located on the opposite sides of the C=N bond, showing an E configuration. In the crystal, mol­ecules are linked via inter­molecular N—H⋯S hydrogen bonds, forming centrosymmetric supra­molecular dimers. Weak C—H⋯π inter­action is also observed in the crystal structure.

Related literature

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]). For related structures, see: Shan et al. (2006[Shan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567-o1569.], 2008a[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.],b[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.], 2011[Shan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2105.]). For the synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O2S2

  • Mr = 331.40

  • Monoclinic, P 21 /c

  • a = 4.673 (2) Å

  • b = 28.498 (6) Å

  • c = 11.735 (5) Å

  • β = 94.070 (4)°

  • V = 1558.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 294 K

  • 0.38 × 0.25 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.87, Tmax = 0.94

  • 6957 measured reflections

  • 2814 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.05

  • 2814 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.51 3.359 (3) 171
C9—H9BCgii 0.97 2.50 3.410 (4) 156
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone and its derivatives have shown the potential application in the biological field (Okabe et al., 1993; Hu et al., 2001). As part of the ongoing investigation on anti-cancer compounds, the title compound has recently been prepared in our laboratory and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. In the molecule the nearly planar dithiocarbazate fragment [r.m.s deviation 0.0264 Å] is oriented with respect to the two benzene rings at 7.25 (17) and 74.09 (9)°, respectively. The nitro group is twisted to the attached-benzene ring with a dihedral angle of 22.4 (7)°. The N1—C7 bond length of 1.272 (4) Å indicates a typical CN double bonds. The nitrobenzene ring and dithiocarbazate fragment are located on the opposite positions of the CN bonds, showing the E-configuration, which agrees with those found in related compounds (Shan et al., 2006; Shan et al., 2008a,b); Shan et al. 2011). In the crystal the molecules are linked to each other via intermolecular N—H···S hydrogen bonding to form the centro-symmetric supramolecular dimer (Table 1). Weak C—H···π interaction is also observed in the crystal structure.

Related literature top

For applications of hydrazone and its derivatives in the biological field, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Shan et al. (2006, 2008a,b, 2011). For the synthesis, see: Hu et al. (2001).

Experimental top

Benzyl dithiocarbazate was synthesized as described previously (Hu et al., 2001). Benzyl dithiocarbazate (0.4 g, 2 mmol) and 2-nitrobenzaldehyde (0.3 g, 2 mmol) were dissolved in ethanol (20 ml), then acetic acid (0.2 ml) was added to the ethanol solution with stirring. The mixture solution was refluxed for 6 h. After cooling to room temperature, yellow microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with absolute methanol to obtain single crystals of the title compound.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms).
Benzyl 3-[(E)-2-nitrobenzylidene]dithiocarbazate top
Crystal data top
C15H13N3O2S2F(000) = 688
Mr = 331.40Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2814 reflections
a = 4.673 (2) Åθ = 2.7–25.2°
b = 28.498 (6) ŵ = 0.35 mm1
c = 11.735 (5) ÅT = 294 K
β = 94.070 (4)°Needle, yellow
V = 1558.8 (10) Å30.38 × 0.25 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 2.8°
ω scansh = 55
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3433
Tmin = 0.87, Tmax = 0.94l = 1014
6957 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3832P]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H13N3O2S2V = 1558.8 (10) Å3
Mr = 331.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.673 (2) ŵ = 0.35 mm1
b = 28.498 (6) ÅT = 294 K
c = 11.735 (5) Å0.38 × 0.25 × 0.23 mm
β = 94.070 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2814 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1925 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.94Rint = 0.041
6957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.05Δρmax = 0.63 e Å3
2814 reflectionsΔρmin = 0.47 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1945 (2)0.55533 (3)0.40002 (8)0.0502 (3)
S20.53350 (19)0.50159 (3)0.23425 (8)0.0520 (3)
N10.3569 (6)0.42391 (8)0.3495 (2)0.0448 (7)
N20.2412 (6)0.46411 (8)0.3892 (2)0.0462 (7)
H20.12350.46270.44230.055*
N30.2496 (8)0.29447 (12)0.5248 (3)0.0760 (10)
O10.1632 (9)0.25714 (11)0.5505 (3)0.1173 (13)
O20.2227 (15)0.32692 (14)0.5852 (5)0.201 (3)
C10.4074 (7)0.29939 (11)0.4221 (3)0.0513 (9)
C20.5231 (9)0.25869 (11)0.3821 (4)0.0663 (11)
H2A0.49580.23030.41900.080*
C30.6797 (9)0.26018 (13)0.2870 (4)0.0725 (12)
H30.75960.23290.25950.087*
C40.7165 (8)0.30232 (13)0.2332 (4)0.0659 (11)
H40.82210.30360.16910.079*
C50.5979 (8)0.34250 (11)0.2739 (3)0.0539 (9)
H50.62600.37070.23640.065*
C60.4374 (7)0.34259 (10)0.3691 (3)0.0452 (8)
C70.3121 (7)0.38673 (10)0.4055 (3)0.0495 (9)
H70.20180.38760.46840.059*
C80.3103 (7)0.50609 (10)0.3458 (3)0.0406 (7)
C90.5817 (7)0.56211 (11)0.1951 (3)0.0499 (9)
H9A0.60920.58050.26460.060*
H9B0.75660.56450.15560.060*
C100.3412 (6)0.58388 (11)0.1207 (3)0.0422 (8)
C110.2337 (8)0.56274 (14)0.0219 (3)0.0620 (10)
H110.30210.53340.00210.074*
C120.0259 (9)0.58440 (18)0.0482 (4)0.0754 (12)
H120.04520.56980.11510.091*
C130.0762 (9)0.62724 (17)0.0198 (4)0.0783 (14)
H130.21570.64190.06770.094*
C140.0259 (8)0.64873 (13)0.0791 (4)0.0731 (13)
H140.04540.67780.09920.088*
C150.2341 (7)0.62698 (11)0.1483 (4)0.0560 (10)
H150.30440.64170.21520.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0721 (6)0.0349 (4)0.0446 (5)0.0042 (4)0.0116 (4)0.0001 (4)
S20.0618 (6)0.0402 (4)0.0561 (6)0.0052 (4)0.0197 (5)0.0039 (4)
N10.0575 (16)0.0352 (14)0.0415 (16)0.0028 (12)0.0008 (14)0.0020 (13)
N20.0601 (16)0.0347 (14)0.0451 (17)0.0064 (12)0.0132 (14)0.0034 (13)
N30.107 (3)0.0466 (19)0.076 (3)0.0025 (19)0.019 (2)0.0149 (19)
O10.170 (4)0.076 (2)0.110 (3)0.038 (2)0.042 (3)0.023 (2)
O20.406 (9)0.068 (2)0.152 (4)0.020 (4)0.178 (5)0.029 (3)
C10.059 (2)0.0388 (18)0.055 (2)0.0062 (15)0.0015 (18)0.0084 (17)
C20.080 (3)0.0318 (17)0.085 (3)0.0018 (17)0.009 (2)0.008 (2)
C30.088 (3)0.041 (2)0.088 (3)0.0135 (19)0.006 (3)0.006 (2)
C40.081 (3)0.055 (2)0.063 (3)0.0091 (19)0.012 (2)0.002 (2)
C50.068 (2)0.0364 (17)0.057 (2)0.0012 (16)0.005 (2)0.0052 (17)
C60.0516 (19)0.0356 (16)0.047 (2)0.0011 (14)0.0061 (17)0.0048 (15)
C70.066 (2)0.0368 (17)0.046 (2)0.0010 (16)0.0056 (18)0.0076 (16)
C80.0456 (17)0.0395 (16)0.0358 (18)0.0000 (13)0.0041 (15)0.0037 (14)
C90.0454 (18)0.0479 (18)0.057 (2)0.0060 (15)0.0100 (17)0.0089 (17)
C100.0396 (17)0.0466 (18)0.041 (2)0.0072 (14)0.0089 (15)0.0093 (16)
C110.064 (2)0.075 (2)0.048 (2)0.001 (2)0.014 (2)0.007 (2)
C120.073 (3)0.111 (4)0.041 (2)0.020 (3)0.001 (2)0.003 (2)
C130.057 (2)0.090 (3)0.085 (4)0.010 (2)0.009 (2)0.048 (3)
C140.067 (3)0.047 (2)0.103 (4)0.0021 (19)0.009 (3)0.018 (2)
C150.060 (2)0.0395 (18)0.067 (3)0.0069 (16)0.006 (2)0.0060 (18)
Geometric parameters (Å, º) top
S1—C81.648 (3)C5—C61.389 (5)
S2—C81.735 (3)C5—H50.9300
S2—C91.803 (3)C6—C71.464 (4)
N1—C71.272 (4)C7—H70.9300
N1—N21.363 (3)C9—C101.507 (5)
N2—C81.349 (4)C9—H9A0.9700
N2—H20.8600C9—H9B0.9700
N3—O21.178 (5)C10—C111.370 (5)
N3—O11.185 (4)C10—C151.374 (5)
N3—C11.464 (5)C11—C121.374 (6)
C1—C21.376 (5)C11—H110.9300
C1—C61.390 (4)C12—C131.361 (6)
C2—C31.377 (6)C12—H120.9300
C2—H2A0.9300C13—C141.368 (6)
C3—C41.373 (5)C13—H130.9300
C3—H30.9300C14—C151.370 (5)
C4—C51.373 (5)C14—H140.9300
C4—H40.9300C15—H150.9300
C8—S2—C9102.38 (15)C6—C7—H7120.6
C7—N1—N2116.1 (3)N2—C8—S1121.0 (2)
C8—N2—N1120.3 (3)N2—C8—S2113.1 (2)
C8—N2—H2119.8S1—C8—S2125.83 (18)
N1—N2—H2119.8C10—C9—S2116.1 (2)
O2—N3—O1119.9 (4)C10—C9—H9A108.3
O2—N3—C1120.2 (4)S2—C9—H9A108.3
O1—N3—C1119.8 (4)C10—C9—H9B108.3
C2—C1—C6122.6 (4)S2—C9—H9B108.3
C2—C1—N3115.7 (3)H9A—C9—H9B107.4
C6—C1—N3121.7 (3)C11—C10—C15118.3 (3)
C1—C2—C3119.6 (4)C11—C10—C9121.5 (3)
C1—C2—H2A120.2C15—C10—C9120.1 (3)
C3—C2—H2A120.2C10—C11—C12120.7 (4)
C4—C3—C2119.4 (4)C10—C11—H11119.7
C4—C3—H3120.3C12—C11—H11119.7
C2—C3—H3120.3C13—C12—C11120.1 (4)
C5—C4—C3120.2 (4)C13—C12—H12119.9
C5—C4—H4119.9C11—C12—H12119.9
C3—C4—H4119.9C12—C13—C14120.2 (4)
C4—C5—C6122.4 (3)C12—C13—H13119.9
C4—C5—H5118.8C14—C13—H13119.9
C6—C5—H5118.8C13—C14—C15119.4 (4)
C5—C6—C1115.8 (3)C13—C14—H14120.3
C5—C6—C7119.1 (3)C15—C14—H14120.3
C1—C6—C7125.1 (3)C14—C15—C10121.3 (4)
N1—C7—C6118.8 (3)C14—C15—H15119.3
N1—C7—H7120.6C10—C15—H15119.3
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.513.359 (3)171
C9—H9B···Cgii0.972.503.410 (4)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O2S2
Mr331.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)4.673 (2), 28.498 (6), 11.735 (5)
β (°) 94.070 (4)
V3)1558.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.38 × 0.25 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.87, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
6957, 2814, 1925
Rint0.041
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 1.05
No. of reflections2814
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.47

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.513.359 (3)171
C9—H9B···Cgii0.972.503.410 (4)156
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Huang, Y.-L., Guo, H.-Q., Li, D.-F. & Sun, J. (2011). Acta Cryst. E67, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008a). Acta Cryst. E64, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008b). Acta Cryst. E64, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567–o1569.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds