metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(furfuryl­amine-κN)(η6-hexa­methyl­benzene)­ruthenium(II)

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

(Received 18 October 2011; accepted 18 October 2011; online 22 October 2011)

The single-crystal X-ray structure analysis of [RuCl2(C12H18)(C5H7NO)] reveals a distorted piano-stool geometry around the RuII atom, with a hexa­methyl­benzene ligand, two chloride ligands and a furfuryl­amine ligand, the latter coordinating through the amine group. In the crystal, a dimeric structure is observed as a result of N—H⋯Cl inter­actions between two symmetry-related mol­ecules.

Related literature

For publications dealing with metal complexes of furfuryl­amine derivatives, see: Hu et al. (2006[Hu, X.-L., Xu, X.-Y., Xu, T.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, m2974-m2975.]); Joesten et al. (1967[Joesten, M. D., Claus, K. G. & Lannert, K. P. (1967). J. Inorg. Nucl. Chem. 29, 1421-1426.]). For reviews on arene–ruthenium complexes as anti­cancer agents, see: Süss-Fink (2010[Süss-Fink, G. (2010). Dalton Trans. 39, 1673-1688.]); Therrien & Smith (2011[Therrien, B. & Smith, G. S. (2011). Dalton Trans. 40, 10793-10800.]). For biological activity of metal complexes of furfuryl derivatives, see: Hamann et al. (1968[Hamann, H. C., Spaziano, V. T., Chou, T. C., Price, C. C. & Lin, H. H. (1968). Can. J. Chem. 46, 419-423.]); Shi et al. (2008[Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288-296.]). For a review on arene–ruthenium chemistry, see: Therrien (2009[Therrien, B. (2009). Coord. Chem. Rev. 253, 493-519.]). For the synthesis, see: Bennett et al. (1982[Bennett, M. A., Huang, T.-N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-75.]). For related structures, see: Govindaswamy et al. (2004[Govindaswamy, P., Mozharivskyj, Y. A. & Mohan Rao, K. (2004). Polyhedron, 23, 3115-3123.]); Therrien & Süss-Fink (2004[Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.]); Therrien et al. (2004[Therrien, B., Vieille-Petit, L., Jeanneret-Gris, J., Štěpnička, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456-2463.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C12H18)(C5H7NO)]

  • Mr = 431.35

  • Monoclinic, P 21 /a

  • a = 7.6883 (6) Å

  • b = 22.8748 (18) Å

  • c = 10.1000 (7) Å

  • β = 100.493 (9)°

  • V = 1746.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 173 K

  • 0.15 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 13771 measured reflections

  • 3428 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.94

  • 3428 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯Cl2i 0.9 2.52 3.406 (3) 168
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arene ruthenium(II) complexes are promising antitumoral and antimetastatic agents (Süss-Fink, 2010; Therrien & Smith, 2011), and furfuryl derivatives are known to possess antimetabolite (Hamann et al., 1968) and antibacterial properties (Shi et al., 2008). The synthesis of dichlorido(furfurylamine-κN)(η6-hexamethylbenzene)ruthenium(II) is presented. However, a biological evaluation was not possible due to the low water-solubility of the compound.

The formation of (η6-C12H18)RuCl2(C5H7NO-κN) is easily monitored by 1H NMR spectroscopy, in which the signal corresponding to the protons of the NH2 group is strongly shifted by 1.57 p.p.m., while the signal of the CH2 protons is also shifted downfield but to a lesser extent (0.15 p.p.m.) as compared to uncoordinated furfurylamine. The infrared spectrum of (η6-C12H18)RuCl2(C5H7NO-κN) shows as well shifting of some of the bands associated to the furfurylamine moiety, especially those corresponding to the symmetrical and asymmetrical νNH, in accordance with other metal complexes of furfurylamine derivatives (Joesten et al., 1967). In addition, the molecular structure of the complex has been established by single-crystal structure analysis.

The title complex shows a three-legged piano-stool geometry with the RuII metal center being surrounded by an hexamethylbenzene ligand, two terminal chlorido and a N-coordinated furfurylamine ligand, see Fig. 1. The furfurylamine acts as a monodentate ligand and the Ru—N distance at 2.156 (2) Å is comparable to the one found in the analogous dichlorido(η6-p-cymene)(benzylamine-κN)ruthenium(II) complex [2.1445 (18) Å] (Govindaswamy et al., 2004). The aromatic ring of the hexamethylbenzene is planar and the Ru-centroid distance is 1.672 Å (centroid defined by C6 to C11). Otherwise, the Ru—Cl distances are almost equivalent at 2.4277 (9) and 2.4299 (8) Å, respectively, which is similar to those found in other dichlorido arene ruthenium complexes (Therrien & Süss-Fink, 2004; Govindaswamy et al., 2004; Therrien et al., 2004).

In the crystal packing, one chlorido is involved in an H-bonded interaction with the NH2 moiety of a neighbouring molecule, thus forming a centrosymmetric dimeric structure: The N—Cl separations being 3.406 (3)Å with the N—H···Cl angles being 168.3°.

Related literature top

For publications dealing with metal complexes of furfurylamine derivatives, see: Hu et al. (2006); Joesten et al. (1967). For reviews on arene–ruthenium complexes as anticancer agents, see: Süss-Fink (2010); Therrien & Smith (2011). For biological activity of metal complexes of furfuryl derivatives, see: Hamann et al. (1968); Shi et al. (2008). For a review on arene–ruthenium chemistry, see: Therrien (2009). For the synthesis, see: Bennett et al. (1982). For related structures, see: Govindaswamy et al. (2004); Therrien & Süss-Fink (2004); Therrien, et al. (2004).

Experimental top

Furfurylamine was purchased from Aldrich and used as received and [(η6-C12H18)Ru(µ-Cl)Cl]2 (Bennett et al., 1982) was prepared according to published methods. The NMR spectrum was recorded on a Bruker 400 MHz spectrometer. The infrared spectrum was recorded on a Perkin-Elmer 1720X FT—IR spectrometer (4000–400 cm-1).

A mixture of [(η6-C12H18)Ru(µ-Cl)Cl]2 (90 mg, 0.135 mmol) and two equivalents of furfurylamine (24 µL, 0.27 mmol) was stirred in dichloromethane (10 ml) for 2 h at room temperature. The orange-red compound which formed was filtered, washed with diethyl ether and dried under vacuum (Yield 98%).

Crystals suitable for X-ray diffraction analysis were obtained, after days, by slow diffusion of diethyl ether into a dichloromethane solution of the title complex.

1H NMR (400 MHz, CDCl3): 7.35 p.p.m. (d, 3J = 2 Hz, 1H, Hγ), 6.29 (dd, 1H, Hβ), 6.20 (d, 3J = 2 Hz, 1H, Hα), 3.96–3.92 (m, 2H, CH2), 2.97 (br, 2H, NH2), 2.15 (s, 18H, CH3).

IR (KBr pellet): νNHasym 3295 s, νNHsym 3194 m, νCOC 1159 m, νCOC 1000 m cm-1.

Refinement top

All H atoms were included in calculated positions (C—H = 0.93 Å for Carom, 0.97 Å for CH2, 0.96 Å for CH3; N—H = 0.90 Å for NH2) and treated as riding atoms with the constraint Uiso(H) = 1.2 (1.5 for methyl) Ueq(carrier) applied.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART and SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (η6-C12H18)RuCl2(C5H7NO-κN). Displacement ellipsoids are drawn at the 50% probability level.
Dichlorido(furfurylamine-κN)(η6-hexamethylbenzene)ruthenium(II) top
Crystal data top
[RuCl2(C12H18)(C5H7NO)]F(000) = 880
Mr = 431.35Dx = 1.640 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 8000 reflections
a = 7.6883 (6) Åθ = 2.0–26.1°
b = 22.8748 (18) ŵ = 1.20 mm1
c = 10.1000 (7) ÅT = 173 K
β = 100.493 (9)°Block, orange
V = 1746.6 (2) Å30.15 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD PLATFORM
diffractometer
2693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
Detector resolution: 0 pixels mm-1h = 99
ω scansk = 2828
13771 measured reflectionsl = 1212
3428 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max = 0.002
205 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[RuCl2(C12H18)(C5H7NO)]V = 1746.6 (2) Å3
Mr = 431.35Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.6883 (6) ŵ = 1.20 mm1
b = 22.8748 (18) ÅT = 173 K
c = 10.1000 (7) Å0.15 × 0.12 × 0.11 mm
β = 100.493 (9)°
Data collection top
Bruker SMART CCD PLATFORM
diffractometer
2693 reflections with I > 2σ(I)
13771 measured reflectionsRint = 0.040
3428 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.94Δρmax = 0.65 e Å3
3428 reflectionsΔρmin = 0.98 e Å3
205 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Bruker SMART CCD PLATFORM using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, ϕ oscillation scans 0 - 200°, step Δϕ = 1.0°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2917 (6)0.67556 (18)0.3554 (4)0.0458 (11)
H10.31650.66900.44780.055*
C20.3965 (6)0.7033 (2)0.2866 (5)0.0554 (14)
H20.50550.72010.32150.067*
C30.3115 (6)0.70300 (18)0.1486 (4)0.0416 (10)
H30.35440.71880.07600.050*
C40.1575 (5)0.67527 (14)0.1450 (3)0.0258 (7)
C50.0108 (5)0.66154 (16)0.0330 (4)0.0318 (8)
H5A0.09990.66430.06570.038*
H5B0.00860.69080.03680.038*
C60.3433 (4)0.64157 (14)0.2398 (3)0.0189 (7)
C70.3751 (4)0.58374 (14)0.1941 (3)0.0204 (7)
C80.3450 (4)0.53442 (14)0.2709 (3)0.0194 (7)
C90.2821 (4)0.54158 (14)0.3960 (3)0.0200 (7)
C100.2485 (4)0.59829 (14)0.4412 (3)0.0190 (7)
C110.2777 (4)0.64832 (14)0.3620 (3)0.0194 (7)
C120.3872 (5)0.69403 (15)0.1635 (4)0.0276 (8)
H12A0.31690.72660.18230.041*
H12B0.36240.68580.06870.041*
H12C0.51030.70330.19060.041*
C130.4423 (5)0.57521 (16)0.0645 (3)0.0281 (8)
H13A0.55860.55840.08340.042*
H13B0.44690.61230.02070.042*
H13C0.36410.54950.00660.042*
C140.3796 (5)0.47449 (15)0.2214 (4)0.0324 (8)
H14A0.33470.47200.12640.049*
H14B0.32180.44590.26780.049*
H14C0.50470.46720.23820.049*
C150.2467 (5)0.48765 (15)0.4726 (3)0.0277 (8)
H15A0.19080.49860.54650.042*
H15B0.35640.46820.50630.042*
H15C0.17030.46180.41360.042*
C160.1769 (5)0.60788 (16)0.5680 (3)0.0291 (8)
H16A0.15480.57080.60620.044*
H16B0.06840.62960.54770.044*
H16C0.26150.62940.63120.044*
C170.2342 (5)0.70814 (14)0.4072 (3)0.0284 (8)
H17A0.33560.73310.41190.043*
H17B0.20200.70560.49450.043*
H17C0.13730.72410.34410.043*
Cl10.15438 (11)0.63943 (4)0.27606 (9)0.0297 (2)
Cl20.08251 (10)0.50113 (3)0.18615 (8)0.02257 (18)
N0.0221 (4)0.60308 (11)0.0272 (3)0.0209 (6)
H1A0.02250.57720.02480.025*
H1B0.13760.59450.02080.025*
O0.1412 (4)0.65784 (12)0.2709 (2)0.0377 (6)
Ru0.10420 (3)0.587116 (10)0.23267 (2)0.01582 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (3)0.032 (2)0.0259 (19)0.008 (2)0.013 (2)0.0090 (17)
C20.049 (3)0.044 (3)0.059 (3)0.006 (2)0.027 (2)0.011 (2)
C30.041 (2)0.037 (2)0.044 (2)0.0089 (19)0.0012 (19)0.0058 (18)
C40.0314 (19)0.0203 (16)0.0236 (16)0.0037 (15)0.0008 (14)0.0029 (13)
C50.035 (2)0.0264 (19)0.0295 (18)0.0074 (16)0.0050 (15)0.0062 (15)
C60.0107 (15)0.0185 (15)0.0259 (16)0.0042 (12)0.0011 (12)0.0005 (12)
C70.0136 (15)0.0233 (16)0.0241 (16)0.0020 (13)0.0031 (12)0.0033 (13)
C80.0126 (15)0.0195 (16)0.0249 (16)0.0029 (12)0.0004 (12)0.0005 (13)
C90.0147 (16)0.0207 (16)0.0223 (15)0.0001 (13)0.0027 (12)0.0038 (12)
C100.0157 (15)0.0257 (17)0.0140 (14)0.0015 (13)0.0018 (12)0.0026 (12)
C110.0156 (16)0.0200 (16)0.0199 (15)0.0032 (13)0.0039 (12)0.0055 (12)
C120.0248 (18)0.0246 (17)0.0329 (18)0.0080 (15)0.0039 (14)0.0020 (14)
C130.0269 (18)0.033 (2)0.0263 (17)0.0018 (15)0.0114 (14)0.0063 (14)
C140.031 (2)0.0235 (18)0.044 (2)0.0068 (16)0.0093 (17)0.0049 (15)
C150.0280 (19)0.0251 (17)0.0291 (18)0.0007 (15)0.0024 (15)0.0070 (14)
C160.035 (2)0.0317 (19)0.0218 (16)0.0043 (16)0.0071 (15)0.0031 (14)
C170.036 (2)0.0207 (17)0.0280 (17)0.0007 (15)0.0035 (15)0.0072 (14)
Cl10.0201 (4)0.0318 (5)0.0365 (5)0.0070 (4)0.0036 (3)0.0094 (4)
Cl20.0227 (4)0.0208 (4)0.0239 (4)0.0054 (3)0.0035 (3)0.0013 (3)
N0.0230 (14)0.0196 (14)0.0188 (13)0.0006 (11)0.0003 (11)0.0025 (10)
O0.0504 (17)0.0359 (15)0.0274 (13)0.0006 (13)0.0083 (12)0.0029 (11)
Ru0.01421 (14)0.01550 (14)0.01747 (14)0.00002 (10)0.00214 (9)0.00114 (10)
Geometric parameters (Å, º) top
C1—C21.319 (7)C10—Ru2.209 (3)
C1—O1.368 (5)C11—C171.499 (4)
C1—H10.9300C11—Ru2.194 (3)
C2—C31.428 (6)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.338 (5)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—O1.360 (4)C13—H13B0.9600
C4—C51.478 (5)C13—H13C0.9600
C5—N1.478 (4)C14—H14A0.9600
C5—H5A0.9700C14—H14B0.9600
C5—H5B0.9700C14—H14C0.9600
C6—C111.425 (4)C15—H15A0.9600
C6—C71.437 (4)C15—H15B0.9600
C6—C121.498 (4)C15—H15C0.9600
C6—Ru2.211 (3)C16—H16A0.9600
C7—C81.412 (4)C16—H16B0.9600
C7—C131.505 (5)C16—H16C0.9600
C7—Ru2.189 (3)C17—H17A0.9600
C8—C91.442 (4)C17—H17B0.9600
C8—C141.500 (4)C17—H17C0.9600
C8—Ru2.184 (3)Cl1—Ru2.4277 (9)
C9—C101.415 (4)Cl2—Ru2.4299 (8)
C9—C151.507 (4)N—Ru2.156 (2)
C9—Ru2.204 (3)N—H1A0.9000
C10—C111.437 (4)N—H1B0.9000
C10—C161.499 (4)
C2—C1—O110.0 (3)C8—C14—H14B109.5
C2—C1—H1125.0H14A—C14—H14B109.5
O—C1—H1125.0C8—C14—H14C109.5
C1—C2—C3107.3 (4)H14A—C14—H14C109.5
C1—C2—H2126.4H14B—C14—H14C109.5
C3—C2—H2126.4C9—C15—H15A109.5
C4—C3—C2105.9 (4)C9—C15—H15B109.5
C4—C3—H3127.0H15A—C15—H15B109.5
C2—C3—H3127.0C9—C15—H15C109.5
C3—C4—O110.2 (3)H15A—C15—H15C109.5
C3—C4—C5132.0 (4)H15B—C15—H15C109.5
O—C4—C5117.8 (3)C10—C16—H16A109.5
N—C5—C4114.4 (3)C10—C16—H16B109.5
N—C5—H5A108.7H16A—C16—H16B109.5
C4—C5—H5A108.7C10—C16—H16C109.5
N—C5—H5B108.7H16A—C16—H16C109.5
C4—C5—H5B108.7H16B—C16—H16C109.5
H5A—C5—H5B107.6C11—C17—H17A109.5
C11—C6—C7119.1 (3)C11—C17—H17B109.5
C11—C6—C12120.5 (3)H17A—C17—H17B109.5
C7—C6—C12120.3 (3)C11—C17—H17C109.5
C11—C6—Ru70.48 (17)H17A—C17—H17C109.5
C7—C6—Ru70.13 (17)H17B—C17—H17C109.5
C12—C6—Ru134.3 (2)C5—N—Ru119.9 (2)
C8—C7—C6120.3 (3)C5—N—H1A107.3
C8—C7—C13119.4 (3)Ru—N—H1A107.3
C6—C7—C13120.3 (3)C5—N—H1B107.3
C8—C7—Ru70.96 (18)Ru—N—H1B107.3
C6—C7—Ru71.76 (18)H1A—N—H1B106.9
C13—C7—Ru130.4 (2)C4—O—C1106.6 (3)
C7—C8—C9120.4 (3)N—Ru—C8118.85 (11)
C7—C8—C14119.3 (3)N—Ru—C796.38 (11)
C9—C8—C14120.3 (3)C8—Ru—C737.68 (12)
C7—C8—Ru71.36 (18)N—Ru—C11125.70 (11)
C9—C8—Ru71.56 (17)C8—Ru—C1180.97 (12)
C14—C8—Ru129.9 (2)C7—Ru—C1168.50 (12)
C10—C9—C8119.8 (3)N—Ru—C9155.51 (12)
C10—C9—C15121.6 (3)C8—Ru—C938.38 (12)
C8—C9—C15118.5 (3)C7—Ru—C968.63 (12)
C10—C9—Ru71.52 (17)C11—Ru—C968.20 (12)
C8—C9—Ru70.07 (17)N—Ru—C10163.32 (11)
C15—C9—Ru128.7 (2)C8—Ru—C1068.47 (11)
C9—C10—C11119.6 (3)C7—Ru—C1081.08 (12)
C9—C10—C16121.8 (3)C11—Ru—C1038.10 (11)
C11—C10—C16118.5 (3)C9—Ru—C1037.40 (11)
C9—C10—Ru71.08 (16)N—Ru—C699.31 (11)
C11—C10—Ru70.36 (16)C8—Ru—C668.43 (12)
C16—C10—Ru129.2 (2)C7—Ru—C638.11 (11)
C6—C11—C10120.8 (3)C11—Ru—C637.75 (12)
C6—C11—C17119.7 (3)C9—Ru—C680.98 (12)
C10—C11—C17119.4 (3)C10—Ru—C668.52 (12)
C6—C11—Ru71.77 (17)N—Ru—Cl181.39 (8)
C10—C11—Ru71.54 (17)C8—Ru—Cl1159.36 (9)
C17—C11—Ru128.2 (2)C7—Ru—Cl1152.45 (9)
C6—C12—H12A109.5C11—Ru—Cl190.40 (9)
C6—C12—H12B109.5C9—Ru—Cl1120.98 (9)
H12A—C12—H12B109.5C10—Ru—Cl193.22 (9)
C6—C12—H12C109.5C6—Ru—Cl1114.82 (9)
H12A—C12—H12C109.5N—Ru—Cl278.72 (7)
H12B—C12—H12C109.5C8—Ru—Cl292.25 (8)
C7—C13—H13A109.5C7—Ru—Cl2119.00 (8)
C7—C13—H13B109.5C11—Ru—Cl2154.90 (9)
H13A—C13—H13B109.5C9—Ru—Cl291.51 (8)
C7—C13—H13C109.5C10—Ru—Cl2117.02 (9)
H13A—C13—H13C109.5C6—Ru—Cl2157.04 (9)
H13B—C13—H13C109.5Cl1—Ru—Cl287.68 (3)
C8—C14—H14A109.5
O—C1—C2—C31.1 (5)C8—C7—Ru—C1066.14 (18)
C1—C2—C3—C41.0 (5)C6—C7—Ru—C1066.39 (18)
C2—C3—C4—O0.6 (5)C13—C7—Ru—C10179.0 (3)
C2—C3—C4—C5179.2 (4)C8—C7—Ru—C6132.5 (3)
C3—C4—C5—N93.9 (5)C13—C7—Ru—C6114.6 (4)
O—C4—C5—N86.4 (4)C8—C7—Ru—Cl1145.91 (17)
C11—C6—C7—C81.2 (4)C6—C7—Ru—Cl113.4 (3)
C12—C6—C7—C8175.7 (3)C13—C7—Ru—Cl1101.2 (3)
Ru—C6—C7—C853.8 (3)C8—C7—Ru—Cl249.89 (19)
C11—C6—C7—C13179.3 (3)C6—C7—Ru—Cl2177.58 (14)
C12—C6—C7—C133.8 (4)C13—C7—Ru—Cl263.0 (3)
Ru—C6—C7—C13126.7 (3)C6—C11—Ru—N52.9 (2)
C11—C6—C7—Ru52.6 (2)C10—C11—Ru—N174.38 (17)
C12—C6—C7—Ru130.5 (3)C17—C11—Ru—N61.0 (3)
C6—C7—C8—C90.1 (5)C6—C11—Ru—C866.24 (19)
C13—C7—C8—C9179.5 (3)C10—C11—Ru—C866.45 (19)
Ru—C7—C8—C954.2 (3)C17—C11—Ru—C8179.8 (3)
C6—C7—C8—C14179.8 (3)C6—C11—Ru—C729.25 (18)
C13—C7—C8—C140.3 (4)C10—C11—Ru—C7103.4 (2)
Ru—C7—C8—C14126.0 (3)C17—C11—Ru—C7143.2 (3)
C6—C7—C8—Ru54.2 (3)C6—C11—Ru—C9103.9 (2)
C13—C7—C8—Ru126.3 (3)C10—C11—Ru—C928.76 (18)
C7—C8—C9—C100.7 (4)C17—C11—Ru—C9142.1 (3)
C14—C8—C9—C10179.5 (3)C6—C11—Ru—C10132.7 (3)
Ru—C8—C9—C1053.4 (2)C17—C11—Ru—C10113.4 (4)
C7—C8—C9—C15178.2 (3)C10—C11—Ru—C6132.7 (3)
C14—C8—C9—C152.0 (4)C17—C11—Ru—C6113.9 (4)
Ru—C8—C9—C15124.1 (3)C6—C11—Ru—Cl1132.59 (17)
C7—C8—C9—Ru54.1 (3)C10—C11—Ru—Cl194.72 (17)
C14—C8—C9—Ru126.1 (3)C17—C11—Ru—Cl118.7 (3)
C8—C9—C10—C110.1 (4)C6—C11—Ru—Cl2142.04 (19)
C15—C9—C10—C11177.5 (3)C10—C11—Ru—Cl29.3 (3)
Ru—C9—C10—C1152.9 (2)C17—C11—Ru—Cl2104.0 (3)
C8—C9—C10—C16177.8 (3)C10—C9—Ru—N158.9 (2)
C15—C9—C10—C160.4 (5)C8—C9—Ru—N26.2 (3)
Ru—C9—C10—C16125.1 (3)C15—C9—Ru—N84.9 (4)
C8—C9—C10—Ru52.7 (2)C10—C9—Ru—C8132.7 (3)
C15—C9—C10—Ru124.7 (3)C15—C9—Ru—C8111.1 (4)
C7—C6—C11—C101.8 (4)C10—C9—Ru—C7103.8 (2)
C12—C6—C11—C10175.1 (3)C8—C9—Ru—C728.97 (17)
Ru—C6—C11—C1054.3 (3)C15—C9—Ru—C7140.1 (3)
C7—C6—C11—C17176.6 (3)C10—C9—Ru—C1129.27 (18)
C12—C6—C11—C176.5 (4)C8—C9—Ru—C11103.5 (2)
Ru—C6—C11—C17124.2 (3)C15—C9—Ru—C11145.4 (3)
C7—C6—C11—Ru52.4 (3)C8—C9—Ru—C10132.7 (3)
C12—C6—C11—Ru130.7 (3)C15—C9—Ru—C10116.2 (4)
C9—C10—C11—C61.2 (4)C10—C9—Ru—C666.25 (19)
C16—C10—C11—C6179.1 (3)C8—C9—Ru—C666.48 (19)
Ru—C10—C11—C654.4 (3)C15—C9—Ru—C6177.6 (3)
C9—C10—C11—C17177.3 (3)C10—C9—Ru—Cl147.4 (2)
C16—C10—C11—C170.7 (4)C8—C9—Ru—Cl1179.92 (15)
Ru—C10—C11—C17124.1 (3)C15—C9—Ru—Cl168.8 (3)
C9—C10—C11—Ru53.2 (2)C10—C9—Ru—Cl2135.55 (17)
C16—C10—C11—Ru124.8 (3)C8—C9—Ru—Cl291.72 (17)
C4—C5—N—Ru154.7 (3)C15—C9—Ru—Cl219.4 (3)
C3—C4—O—C10.1 (4)C9—C10—Ru—N148.7 (4)
C5—C4—O—C1179.9 (3)C11—C10—Ru—N16.1 (5)
C2—C1—O—C40.7 (5)C16—C10—Ru—N95.2 (5)
C5—N—Ru—C8106.9 (3)C9—C10—Ru—C829.36 (18)
C5—N—Ru—C774.8 (3)C11—C10—Ru—C8103.3 (2)
C5—N—Ru—C116.8 (3)C16—C10—Ru—C8145.4 (3)
C5—N—Ru—C9125.1 (3)C9—C10—Ru—C766.30 (19)
C5—N—Ru—C105.4 (5)C11—C10—Ru—C766.35 (19)
C5—N—Ru—C636.4 (3)C16—C10—Ru—C7177.7 (3)
C5—N—Ru—Cl177.5 (3)C9—C10—Ru—C11132.6 (3)
C5—N—Ru—Cl2166.8 (3)C16—C10—Ru—C11111.3 (4)
C7—C8—Ru—N59.6 (2)C11—C10—Ru—C9132.6 (3)
C9—C8—Ru—N167.94 (16)C16—C10—Ru—C9116.0 (4)
C14—C8—Ru—N53.5 (3)C9—C10—Ru—C6103.7 (2)
C9—C8—Ru—C7132.4 (3)C11—C10—Ru—C628.92 (18)
C14—C8—Ru—C7113.1 (4)C16—C10—Ru—C6140.2 (3)
C7—C8—Ru—C1166.33 (18)C9—C10—Ru—Cl1140.83 (17)
C9—C8—Ru—C1166.11 (19)C11—C10—Ru—Cl186.53 (18)
C14—C8—Ru—C11179.4 (3)C16—C10—Ru—Cl124.8 (3)
C7—C8—Ru—C9132.4 (3)C9—C10—Ru—Cl251.8 (2)
C14—C8—Ru—C9114.5 (4)C11—C10—Ru—Cl2175.56 (15)
C7—C8—Ru—C10103.8 (2)C16—C10—Ru—Cl264.3 (3)
C9—C8—Ru—C1028.66 (17)C11—C6—Ru—N138.96 (18)
C14—C8—Ru—C10143.1 (3)C7—C6—Ru—N88.47 (18)
C7—C8—Ru—C629.28 (17)C12—C6—Ru—N25.0 (3)
C9—C8—Ru—C6103.2 (2)C11—C6—Ru—C8103.6 (2)
C14—C8—Ru—C6142.4 (3)C7—C6—Ru—C828.97 (18)
C7—C8—Ru—Cl1132.6 (2)C12—C6—Ru—C8142.4 (4)
C9—C8—Ru—Cl10.2 (4)C11—C6—Ru—C7132.6 (3)
C14—C8—Ru—Cl1114.3 (3)C12—C6—Ru—C7113.4 (4)
C7—C8—Ru—Cl2137.98 (17)C7—C6—Ru—C11132.6 (3)
C9—C8—Ru—Cl289.59 (17)C12—C6—Ru—C11114.0 (4)
C14—C8—Ru—Cl224.9 (3)C11—C6—Ru—C965.85 (19)
C8—C7—Ru—N130.50 (18)C7—C6—Ru—C966.72 (19)
C6—C7—Ru—N96.97 (18)C12—C6—Ru—C9179.8 (3)
C13—C7—Ru—N17.6 (3)C11—C6—Ru—C1029.17 (18)
C6—C7—Ru—C8132.5 (3)C7—C6—Ru—C10103.4 (2)
C13—C7—Ru—C8112.9 (4)C12—C6—Ru—C10143.2 (4)
C8—C7—Ru—C11103.5 (2)C11—C6—Ru—Cl154.20 (19)
C6—C7—Ru—C1128.98 (18)C7—C6—Ru—Cl1173.23 (15)
C13—C7—Ru—C11143.6 (3)C12—C6—Ru—Cl159.8 (3)
C8—C7—Ru—C929.47 (18)C11—C6—Ru—Cl2138.00 (19)
C6—C7—Ru—C9103.05 (19)C7—C6—Ru—Cl25.4 (3)
C13—C7—Ru—C9142.3 (3)C12—C6—Ru—Cl2108.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···Cl2i0.92.523.406 (3)168
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[RuCl2(C12H18)(C5H7NO)]
Mr431.35
Crystal system, space groupMonoclinic, P21/a
Temperature (K)173
a, b, c (Å)7.6883 (6), 22.8748 (18), 10.1000 (7)
β (°) 100.493 (9)
V3)1746.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.15 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD PLATFORM
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13771, 3428, 2693
Rint0.040
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.94
No. of reflections3428
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.98

Computer programs: SMART (Bruker, 1999), SMART and SAINT (Bruker, 1999), SAINT (Bruker, 1999), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···Cl2i0.92.5203.406 (3)168.3
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AG gratefully acknowledges financial support from the Federal Commission for Scholarships for Foreign Students.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBennett, M. A., Huang, T.-N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–75.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGovindaswamy, P., Mozharivskyj, Y. A. & Mohan Rao, K. (2004). Polyhedron, 23, 3115–3123.  Web of Science CSD CrossRef CAS Google Scholar
First citationHamann, H. C., Spaziano, V. T., Chou, T. C., Price, C. C. & Lin, H. H. (1968). Can. J. Chem. 46, 419–423.  CrossRef CAS Web of Science Google Scholar
First citationHu, X.-L., Xu, X.-Y., Xu, T.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, m2974–m2975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoesten, M. D., Claus, K. G. & Lannert, K. P. (1967). J. Inorg. Nucl. Chem. 29, 1421–1426.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem. 61, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationSüss-Fink, G. (2010). Dalton Trans. 39, 1673–1688.  PubMed Google Scholar
First citationTherrien, B. (2009). Coord. Chem. Rev. 253, 493–519.  Web of Science CrossRef CAS Google Scholar
First citationTherrien, B. & Smith, G. S. (2011). Dalton Trans. 40, 10793–10800.  PubMed Google Scholar
First citationTherrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationTherrien, B., Vieille-Petit, L., Jeanneret-Gris, J., Štěpnička, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456–2463.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds