organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Bromo­eth­yl)isoindoline-1,3-dione

aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: yingshao@cczu.edu.cn

(Received 23 September 2011; accepted 28 September 2011; online 5 October 2011)

The asymmetric unit of the title compound, C10H8BrNO2, contains three crystallographically independent mol­ecules. Two of the N—C—C—Br side chains adopt anti conformations [torsion angles = −179.8 (5) and −179.4 (4)°] and the other is gauche [−66.5 (6)°]. The crystal structure features short Br⋯O [3.162 (5) Å] contacts, C—H⋯O hydrogen bonds and numerous ππ stacking inter­actions [centroid–centroid separations = 3.517 (4)–3.950 (4) Å].

Related literature

For general background to and applications of the title compound, see: Sheng et al. (2007[Sheng, X., Lu, X.-M., Zhang, J.-J., Chen, Y.-T., Lu, G.-Y., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799-1802.]). For the preparation, see: Clouet & Juhl (1994[Clouet, G. & Juhl, H. J. (1994). Macromol. Chem. Phys. 195, 243-251.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrNO2

  • Mr = 254.08

  • Triclinic, [P \overline 1]

  • a = 8.575 (2) Å

  • b = 11.067 (3) Å

  • c = 16.333 (5) Å

  • α = 99.001 (6)°

  • β = 96.164 (5)°

  • γ = 102.259 (6)°

  • V = 1480.2 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 297 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.370, Tmax = 0.437

  • 7716 measured reflections

  • 5043 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.177

  • S = 1.00

  • 5043 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.93 2.59 3.301 (9) 133
C10—H10A⋯O3ii 0.97 2.48 3.409 (8) 161
C10—H10B⋯O5iii 0.97 2.60 3.533 (9) 163
C13—H13⋯O4iv 0.93 2.52 3.448 (8) 175
C14—H14⋯O1 0.93 2.59 3.495 (10) 165
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C10H8BrNO2, which is an important aminoethylation reagent in the classic Gabriel Synthesis (Sheng et al., 2007), was prepared by nucleophilic substitution of 1,2-dibromoethane with potassium phthalimide in DMF at room temperature (Clouet et al., 1994). The title compound crystallizes in space group P1 with three crystallographically independent molecules in the asymmetric unit, designated A, B and C (Fig. 1). In the crystal, the phthalimide rings are almost coplanar [r.m.s. deviations = 0.0681 (A), 0.0125 (B), 0.0113 (C) Å, respectively]. The molecular geometries of all molecules are essentiall similar, except for the BrCH2CH2 groups adopting slightly different zigzag conformations.

An interesting feature of the crystal structure is the short non-hydrogen Br···O interactions (table 1), together with intra- and inter-molecular C—H···O hydrogen bonding interactions (table 2), which links the molecules into an extended three-dimensional network, as shown in Fig. 2. The crystal structure is further stabilized by intermolecular ππ stacking interactions invoving the benzene and maleinimide rings [centroid-centroid distances = 3.517 (4) - 3.950 (4) Å].

Related literature top

For general background to and applications of the title compound, see: Sheng et al. (2007). For the preparation, see: Clouet & Juhl (1994).

Experimental top

The title compound was prepared according to literature procedures (Clouet et al., 1994). Yield: 86%. Colourless blocks were obtained by slow evaporation of EtOH.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Perspective view of the packing of the title compound along b direction. Labels of atoms have been omitted for clarity.
2-(2-Bromoethyl)isoindoline-1,3-dione top
Crystal data top
C10H8BrNO2Z = 6
Mr = 254.08F(000) = 756
Triclinic, P1Dx = 1.710 Mg m3
Hall symbol: -P 1Melting point: 356.0(3) K
a = 8.575 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.067 (3) ÅCell parameters from 3260 reflections
c = 16.333 (5) Åθ = 2.5–27.1°
α = 99.001 (6)°µ = 4.14 mm1
β = 96.164 (5)°T = 297 K
γ = 102.259 (6)°Block, colorless
V = 1480.2 (7) Å30.25 × 0.23 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5043 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.370, Tmax = 0.437k = 713
7716 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1033P)2]
where P = (Fo2 + 2Fc2)/3
5043 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C10H8BrNO2γ = 102.259 (6)°
Mr = 254.08V = 1480.2 (7) Å3
Triclinic, P1Z = 6
a = 8.575 (2) ÅMo Kα radiation
b = 11.067 (3) ŵ = 4.14 mm1
c = 16.333 (5) ÅT = 297 K
α = 99.001 (6)°0.25 × 0.23 × 0.20 mm
β = 96.164 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3241 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.437Rint = 0.042
7716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.00Δρmax = 0.83 e Å3
5043 reflectionsΔρmin = 0.64 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.05219 (9)0.17632 (7)0.29910 (5)0.0612 (3)
Br10.22870 (8)0.96923 (6)0.46532 (5)0.0495 (2)
Br31.05699 (13)0.37156 (10)0.10602 (7)0.0923 (4)
C10.4862 (9)0.2168 (6)0.0232 (4)0.0491 (17)
H10.39980.28200.00340.059*
C20.6406 (9)0.2208 (7)0.0145 (4)0.0538 (19)
H20.65960.29220.01730.065*
C30.7710 (9)0.1236 (8)0.0510 (5)0.059 (2)
H30.87480.13000.04280.070*
C40.7475 (8)0.0169 (7)0.0997 (5)0.0528 (18)
H40.83460.04920.12420.063*
C50.5920 (7)0.0105 (6)0.1114 (4)0.0393 (15)
C60.4630 (8)0.1100 (5)0.0740 (4)0.0382 (15)
C70.3144 (8)0.0779 (6)0.0967 (4)0.0441 (16)
C80.5291 (8)0.0885 (6)0.1586 (4)0.0443 (16)
C90.2475 (8)0.1140 (7)0.1804 (5)0.0511 (18)
H9A0.29390.20360.18780.061*
H9B0.14990.09400.14000.061*
C100.2073 (8)0.0820 (7)0.2603 (4)0.0503 (17)
H10A0.30410.10320.30130.060*
H10B0.16120.00750.25330.060*
C110.5109 (7)0.6382 (5)0.4534 (4)0.0365 (14)
C120.6682 (8)0.6298 (6)0.4518 (5)0.0507 (18)
H120.75180.68490.48930.061*
C130.6980 (8)0.5376 (7)0.3930 (5)0.054 (2)
H130.80370.53080.39060.065*
C140.5758 (9)0.4553 (7)0.3379 (5)0.0532 (19)
H140.60080.39430.29890.064*
C150.4148 (9)0.4604 (6)0.3386 (5)0.0514 (18)
H150.33110.40430.30160.062*
C160.3882 (7)0.5545 (6)0.3979 (4)0.0371 (14)
C170.2320 (7)0.5819 (6)0.4174 (4)0.0389 (15)
C180.4407 (7)0.7225 (5)0.5093 (4)0.0373 (15)
C190.1552 (8)0.7387 (6)0.5261 (4)0.0468 (17)
H19A0.20820.78870.57990.056*
H19B0.07190.67070.53640.056*
C200.0780 (7)0.8198 (5)0.4764 (5)0.0446 (17)
H20A0.00890.84320.50380.054*
H20B0.03170.77160.42110.054*
C210.3965 (9)0.6962 (7)0.2211 (5)0.058 (2)
H210.30610.63740.19150.069*
C220.3827 (9)0.8007 (7)0.2763 (5)0.057 (2)
H220.28080.81130.28520.069*
C230.5206 (9)0.8916 (7)0.3192 (5)0.0545 (19)
H230.50930.96240.35500.065*
C240.6708 (9)0.8747 (7)0.3077 (4)0.0510 (17)
H240.76270.93320.33600.061*
C250.6838 (8)0.7710 (6)0.2544 (4)0.0412 (15)
C260.5487 (8)0.6835 (6)0.2123 (4)0.0433 (16)
C270.6050 (8)0.5849 (6)0.1569 (5)0.0495 (17)
C280.8293 (8)0.7294 (6)0.2302 (4)0.0450 (16)
C290.8764 (10)0.5529 (7)0.1255 (5)0.061 (2)
H29A0.97430.61280.12110.074*
H29B0.82190.51500.06930.074*
C300.9173 (10)0.4537 (7)0.1703 (5)0.064 (2)
H30A0.81990.39310.17440.077*
H30B0.97230.49110.22640.077*
N10.3639 (6)0.0434 (5)0.1479 (3)0.0419 (13)
N20.2731 (6)0.6854 (4)0.4833 (3)0.0363 (12)
N30.7699 (7)0.6185 (5)0.1727 (4)0.0514 (15)
O10.6004 (6)0.1893 (5)0.1976 (4)0.0694 (16)
O20.1764 (6)0.1350 (5)0.0784 (4)0.0734 (17)
O30.5045 (5)0.8060 (4)0.5681 (3)0.0544 (13)
O40.0969 (5)0.5313 (5)0.3867 (3)0.0596 (14)
O50.9687 (6)0.7775 (5)0.2544 (4)0.0713 (16)
O60.5281 (7)0.4928 (5)0.1101 (4)0.0819 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.0557 (5)0.0705 (5)0.0602 (5)0.0213 (4)0.0216 (4)0.0028 (4)
Br10.0543 (4)0.0379 (4)0.0570 (5)0.0104 (3)0.0134 (3)0.0080 (3)
Br30.1184 (8)0.0883 (7)0.0948 (7)0.0682 (6)0.0399 (6)0.0136 (6)
C10.051 (4)0.044 (4)0.047 (4)0.009 (3)0.002 (3)0.001 (3)
C20.061 (5)0.053 (4)0.047 (4)0.017 (4)0.011 (4)0.002 (3)
C30.054 (5)0.084 (6)0.047 (4)0.034 (4)0.017 (4)0.007 (4)
C40.036 (4)0.064 (5)0.054 (5)0.010 (3)0.002 (3)0.004 (4)
C50.032 (3)0.047 (4)0.038 (4)0.011 (3)0.002 (3)0.007 (3)
C60.044 (4)0.032 (3)0.036 (4)0.008 (3)0.003 (3)0.000 (3)
C70.030 (4)0.059 (4)0.037 (4)0.005 (3)0.003 (3)0.006 (3)
C80.045 (4)0.040 (4)0.046 (4)0.009 (3)0.007 (3)0.002 (3)
C90.046 (4)0.053 (4)0.061 (5)0.025 (3)0.010 (4)0.012 (4)
C100.048 (4)0.054 (4)0.050 (4)0.017 (3)0.010 (3)0.003 (3)
C110.028 (3)0.028 (3)0.052 (4)0.001 (2)0.002 (3)0.012 (3)
C120.031 (4)0.043 (4)0.078 (5)0.002 (3)0.005 (4)0.020 (4)
C130.043 (4)0.054 (4)0.082 (6)0.023 (4)0.031 (4)0.032 (4)
C140.061 (5)0.046 (4)0.064 (5)0.022 (4)0.030 (4)0.014 (4)
C150.061 (5)0.035 (4)0.061 (5)0.013 (3)0.020 (4)0.006 (3)
C160.038 (3)0.033 (3)0.040 (4)0.008 (3)0.004 (3)0.006 (3)
C170.028 (3)0.041 (4)0.044 (4)0.005 (3)0.000 (3)0.005 (3)
C180.041 (4)0.021 (3)0.048 (4)0.002 (3)0.003 (3)0.010 (3)
C190.038 (4)0.051 (4)0.052 (4)0.010 (3)0.016 (3)0.005 (3)
C200.027 (3)0.032 (3)0.073 (5)0.011 (3)0.005 (3)0.001 (3)
C210.048 (4)0.045 (4)0.078 (6)0.005 (3)0.008 (4)0.016 (4)
C220.058 (5)0.058 (5)0.069 (5)0.027 (4)0.026 (4)0.021 (4)
C230.067 (5)0.054 (4)0.051 (4)0.024 (4)0.019 (4)0.015 (4)
C240.057 (4)0.050 (4)0.045 (4)0.013 (3)0.009 (4)0.004 (3)
C250.039 (4)0.034 (3)0.049 (4)0.011 (3)0.003 (3)0.006 (3)
C260.043 (4)0.041 (4)0.048 (4)0.014 (3)0.005 (3)0.008 (3)
C270.048 (4)0.040 (4)0.051 (4)0.007 (3)0.004 (3)0.007 (3)
C280.042 (4)0.044 (4)0.048 (4)0.010 (3)0.006 (3)0.004 (3)
C290.070 (5)0.059 (5)0.060 (5)0.023 (4)0.020 (4)0.006 (4)
C300.066 (5)0.069 (5)0.061 (5)0.027 (4)0.012 (4)0.007 (4)
N10.040 (3)0.039 (3)0.050 (3)0.018 (2)0.008 (3)0.004 (2)
N20.031 (3)0.026 (2)0.050 (3)0.007 (2)0.009 (2)0.000 (2)
N30.050 (4)0.041 (3)0.058 (4)0.012 (3)0.009 (3)0.009 (3)
O10.060 (3)0.050 (3)0.080 (4)0.001 (3)0.005 (3)0.020 (3)
O20.045 (3)0.078 (4)0.083 (4)0.006 (3)0.001 (3)0.010 (3)
O30.042 (3)0.039 (3)0.068 (3)0.000 (2)0.016 (3)0.003 (2)
O40.027 (2)0.059 (3)0.075 (4)0.000 (2)0.006 (2)0.017 (3)
O50.038 (3)0.072 (4)0.091 (4)0.003 (3)0.001 (3)0.003 (3)
O60.074 (4)0.057 (3)0.094 (5)0.008 (3)0.002 (3)0.028 (3)
Geometric parameters (Å, º) top
Br2—C101.955 (6)C15—H150.9300
Br1—C201.917 (6)C16—C171.490 (8)
Br3—C301.949 (7)C17—O41.191 (7)
C1—C21.356 (10)C17—N21.399 (8)
C1—C61.397 (9)C18—O31.211 (7)
C1—H10.9300C18—N21.407 (8)
C2—C31.381 (10)C19—N21.460 (7)
C2—H20.9300C19—C201.506 (9)
C3—C41.382 (10)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.382 (9)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.392 (9)C21—C261.363 (10)
C5—C81.470 (9)C21—C221.385 (10)
C6—C71.462 (9)C21—H210.9300
C7—O21.199 (8)C22—C231.413 (11)
C7—N11.418 (8)C22—H220.9300
C8—O11.196 (8)C23—C241.369 (10)
C8—N11.380 (8)C23—H230.9300
C9—C101.463 (10)C24—C251.360 (9)
C9—N11.485 (8)C24—H240.9300
C9—H9A0.9700C25—C261.377 (9)
C9—H9B0.9700C25—C281.489 (9)
C10—H10A0.9700C26—C271.500 (9)
C10—H10B0.9700C27—O61.191 (8)
C11—C121.374 (9)C27—N31.369 (9)
C11—C161.381 (9)C28—O51.196 (8)
C11—C181.468 (9)C28—N31.385 (8)
C12—C131.374 (10)C29—N31.488 (9)
C12—H120.9300C29—C301.490 (10)
C13—C141.368 (10)C29—H29A0.9700
C13—H130.9300C29—H29B0.9700
C14—C151.395 (10)C30—H30A0.9700
C14—H140.9300C30—H30B0.9700
C15—C161.381 (9)
Cg1···Cg4i3.517 (4)Cg2···Cg63.950 (4)
Cg1···Cg6ii3.629 (4)Cg3···Cg4iv3.603 (4)
Cg2···Cg5iii3.558 (4)Cg3···Cg53.843 (4)
C2—C1—C6116.9 (7)N2—C18—C11105.7 (5)
C2—C1—H1121.6N2—C19—C20112.6 (5)
C6—C1—H1121.6N2—C19—H19A109.1
C1—C2—C3122.9 (7)C20—C19—H19A109.1
C1—C2—H2118.6N2—C19—H19B109.1
C3—C2—H2118.6C20—C19—H19B109.1
C2—C3—C4120.2 (7)H19A—C19—H19B107.8
C2—C3—H3119.9C19—C20—Br1112.4 (4)
C4—C3—H3119.9C19—C20—H20A109.1
C3—C4—C5118.6 (7)Br1—C20—H20A109.1
C3—C4—H4120.7C19—C20—H20B109.1
C5—C4—H4120.7Br1—C20—H20B109.1
C4—C5—C6120.0 (6)H20A—C20—H20B107.9
C4—C5—C8131.4 (6)C26—C21—C22116.9 (7)
C6—C5—C8108.7 (5)C26—C21—H21121.6
C5—C6—C1121.5 (6)C22—C21—H21121.6
C5—C6—C7108.2 (5)C21—C22—C23121.3 (7)
C1—C6—C7130.3 (6)C21—C22—H22119.4
O2—C7—N1123.6 (6)C23—C22—H22119.4
O2—C7—C6131.0 (6)C24—C23—C22119.5 (7)
N1—C7—C6105.4 (5)C24—C23—H23120.3
O1—C8—N1124.9 (6)C22—C23—H23120.3
O1—C8—C5129.2 (6)C25—C24—C23119.0 (7)
N1—C8—C5105.8 (5)C25—C24—H24120.5
C10—C9—N1110.8 (6)C23—C24—H24120.5
C10—C9—H9A109.5C24—C25—C26121.1 (6)
N1—C9—H9A109.5C24—C25—C28130.4 (6)
C10—C9—H9B109.5C26—C25—C28108.5 (5)
N1—C9—H9B109.5C21—C26—C25122.2 (6)
H9A—C9—H9B108.1C21—C26—C27130.2 (7)
C9—C10—Br2108.9 (5)C25—C26—C27107.5 (6)
C9—C10—H10A109.9O6—C27—N3124.8 (7)
Br2—C10—H10A109.9O6—C27—C26129.5 (7)
C9—C10—H10B109.9N3—C27—C26105.6 (5)
Br2—C10—H10B109.9O5—C28—N3125.8 (6)
H10A—C10—H10B108.3O5—C28—C25129.1 (6)
C12—C11—C16120.2 (6)N3—C28—C25105.1 (6)
C12—C11—C18130.8 (6)N3—C29—C30109.2 (6)
C16—C11—C18109.0 (5)N3—C29—H29A109.8
C13—C12—C11117.9 (7)C30—C29—H29A109.8
C13—C12—H12121.0N3—C29—H29B109.8
C11—C12—H12121.0C30—C29—H29B109.8
C14—C13—C12121.6 (6)H29A—C29—H29B108.3
C14—C13—H13119.2C29—C30—Br3107.4 (5)
C12—C13—H13119.2C29—C30—H30A110.2
C13—C14—C15121.9 (7)Br3—C30—H30A110.2
C13—C14—H14119.0C29—C30—H30B110.2
C15—C14—H14119.0Br3—C30—H30B110.2
C16—C15—C14115.4 (7)H30A—C30—H30B108.5
C16—C15—H15122.3C8—N1—C7111.9 (5)
C14—C15—H15122.3C8—N1—C9125.3 (5)
C15—C16—C11123.0 (6)C7—N1—C9122.6 (5)
C15—C16—C17128.8 (6)C17—N2—C18111.7 (5)
C11—C16—C17108.1 (5)C17—N2—C19123.9 (5)
O4—C17—N2123.9 (6)C18—N2—C19124.1 (5)
O4—C17—C16130.7 (6)C27—N3—C28113.3 (6)
N2—C17—C16105.5 (5)C27—N3—C29123.9 (6)
O3—C18—N2123.8 (6)C28—N3—C29122.4 (6)
O3—C18—C11130.5 (6)
C6—C1—C2—C32.2 (11)C22—C21—C26—C251.4 (11)
C1—C2—C3—C40.9 (12)C22—C21—C26—C27178.0 (7)
C2—C3—C4—C50.5 (11)C24—C25—C26—C210.6 (11)
C3—C4—C5—C60.4 (11)C28—C25—C26—C21179.5 (7)
C3—C4—C5—C8179.7 (7)C24—C25—C26—C27177.9 (6)
C4—C5—C6—C11.0 (10)C28—C25—C26—C272.2 (8)
C8—C5—C6—C1178.4 (6)C21—C26—C27—O62.9 (14)
C4—C5—C6—C7179.9 (6)C25—C26—C27—O6179.9 (8)
C8—C5—C6—C70.5 (7)C21—C26—C27—N3179.4 (8)
C2—C1—C6—C52.2 (10)C25—C26—C27—N32.4 (8)
C2—C1—C6—C7179.0 (7)C24—C25—C28—O52.0 (13)
C5—C6—C7—O2179.6 (8)C26—C25—C28—O5177.9 (8)
C1—C6—C7—O20.8 (13)C24—C25—C28—N3178.9 (7)
C5—C6—C7—N10.3 (7)C26—C25—C28—N31.2 (8)
C1—C6—C7—N1178.5 (7)N3—C29—C30—Br3179.8 (5)
C4—C5—C8—O11.1 (14)O1—C8—N1—C7178.5 (7)
C6—C5—C8—O1178.2 (7)C5—C8—N1—C70.3 (8)
C4—C5—C8—N1179.8 (7)O1—C8—N1—C92.3 (12)
C6—C5—C8—N10.5 (8)C5—C8—N1—C9176.5 (6)
N1—C9—C10—Br2179.4 (4)O2—C7—N1—C8179.3 (7)
C16—C11—C12—C130.8 (10)C6—C7—N1—C80.0 (7)
C18—C11—C12—C13177.9 (6)O2—C7—N1—C93.1 (11)
C11—C12—C13—C140.5 (11)C6—C7—N1—C9176.3 (6)
C12—C13—C14—C150.2 (11)C10—C9—N1—C896.1 (8)
C13—C14—C15—C160.6 (11)C10—C9—N1—C788.1 (8)
C14—C15—C16—C110.3 (10)O4—C17—N2—C18177.6 (6)
C14—C15—C16—C17177.0 (6)C16—C17—N2—C182.4 (7)
C12—C11—C16—C150.4 (10)O4—C17—N2—C194.2 (10)
C18—C11—C16—C15178.1 (6)C16—C17—N2—C19175.8 (6)
C12—C11—C16—C17176.9 (6)O3—C18—N2—C17176.3 (6)
C18—C11—C16—C170.7 (7)C11—C18—N2—C172.0 (7)
C15—C16—C17—O41.0 (12)O3—C18—N2—C192.9 (9)
C11—C16—C17—O4178.1 (7)C11—C18—N2—C19175.3 (6)
C15—C16—C17—N2179.0 (6)C20—C19—N2—C1778.0 (8)
C11—C16—C17—N21.9 (7)C20—C19—N2—C18109.4 (7)
C12—C11—C18—O30.1 (12)O6—C27—N3—C28179.5 (8)
C16—C11—C18—O3177.4 (6)C26—C27—N3—C281.7 (8)
C12—C11—C18—N2178.0 (7)O6—C27—N3—C298.0 (13)
C16—C11—C18—N20.7 (7)C26—C27—N3—C29174.2 (6)
N2—C19—C20—Br166.5 (6)O5—C28—N3—C27179.6 (7)
C26—C21—C22—C231.9 (11)C25—C28—N3—C270.4 (8)
C21—C22—C23—C241.6 (11)O5—C28—N3—C297.8 (12)
C22—C23—C24—C250.7 (11)C25—C28—N3—C29173.1 (6)
C23—C24—C25—C260.2 (11)C30—C29—N3—C2793.1 (9)
C23—C24—C25—C28179.9 (7)C30—C29—N3—C2895.1 (8)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.593.301 (9)133
C10—H10A···O3iii0.972.483.409 (8)161
C10—H10B···O5v0.972.603.533 (9)163
C13—H13···O4vi0.932.523.448 (8)175
C14—H14···O10.932.593.495 (10)165
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+1, z+1; (v) x1, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8BrNO2
Mr254.08
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.575 (2), 11.067 (3), 16.333 (5)
α, β, γ (°)99.001 (6), 96.164 (5), 102.259 (6)
V3)1480.2 (7)
Z6
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.370, 0.437
No. of measured, independent and
observed [I > 2σ(I)] reflections
7716, 5043, 3241
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.177, 1.00
No. of reflections5043
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.64

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.5933.301 (9)133
C10—H10A···O3ii0.972.4763.409 (8)161
C10—H10B···O5iii0.972.5963.533 (9)163
C13—H13···O4iv0.932.5213.448 (8)175
C14—H14···O10.932.5903.495 (10)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y1, z; (iv) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge Changzhou University and the Key Laboratory of Fine Chemical Engineering of Jiangsu Province for financial support (ZMF10020010 and SCZ10102271B).

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClouet, G. & Juhl, H. J. (1994). Macromol. Chem. Phys. 195, 243–251.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, X., Lu, X.-M., Zhang, J.-J., Chen, Y.-T., Lu, G.-Y., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799–1802.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds