organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2896-o2897

N,N,N′,N′-Tetra­iso­butyl­pyridine-2,6-dicarboxamide

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic, cKhlopin Radium Institute, Research and Production Association, 2nd Murinskiy Prospect b. 28, 194021 St Petersburg, Russian Federation, and dDepartment of Analytical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 26 September 2011; accepted 3 October 2011; online 8 October 2011)

In the title compound, C23H39N3O2, the amide O atoms are displaced by 1.020 (1) and 1.211 (1) Å from the mean plane of the central pyridine ring. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds between methyl­ene groups in the isobutyl substituents and the amide O atoms.

Related literature

The title compound has been investigated for its extractive properties towards trivalent metals in a synergistic mixture with chlorinated cobalt dicarbollide. For further information, see: Alyapyshev et al. (2004[Alyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270-271.], 2006[Alyapyshev, M. Y., Babain, V. A., Smirnov, I. V. & Shadrin, A. Y. (2006). Radiochemistry, 48, 369-373.]); Romanovskiy et al. (2006[Romanovskiy, V. N., Babain, V. A., Alyapyshev, M. Y., Smirbov, V. A., Herbst, R. S., Lan, J. D. & Todd, T. A. (2006). Separ. Sci. Technol. 41, 2111-2127.]); Babain et al. (2007[Babain, V. A., Alyapyshev, M. Y. & Kiseleva, R. N. (2007). Radiochim. Acta, 95, 217-223.]); Makrlík et al. (2009[Makrlík, E., Vaňura, P., Selucký, P., Babain, V. A. & Smirnov, I. V. (2009). J. Radioanal. Nucl. Chem. 279, 743-747.], 2011[Makrlík, E., Vaňura, P., Selucký, P., Babain, V. A. & Smirnov, I. V. (2011). J. Radioanal. Nucl. Chem. 288, 233-238.]). For further synthetic details, see: Nikitskaya et al. (1958[Nikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obsch. Khim. 28, 161-166.]); Shimada et al. (2004[Shimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147-161.]).

[Scheme 1]

Experimental

Crystal data
  • C23H39N3O2

  • Mr = 389.57

  • Monoclinic, P 21 /c

  • a = 10.5247 (2) Å

  • b = 17.7765 (3) Å

  • c = 12.8773 (2) Å

  • β = 96.877 (2)°

  • V = 2391.91 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.54 mm−1

  • T = 120 K

  • 0.49 × 0.42 × 0.23 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.929, Tmax = 0.962

  • 31214 measured reflections

  • 4272 independent reflections

  • 3867 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.05

  • 4272 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.97 2.57 3.5226 (15) 166
C11—H11A⋯O1ii 0.97 2.55 3.4790 (15) 160
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), shown in Figure 1 and Scheme 1, has been investigated in a synergistic mixtures with the dicarbollylcobaltate anion and its halogen derivatives for significant extraction properties towards trivalent metal cations (Alyapyshev et al.,2004). It consists of pyridine ring with a di-isobutylamide groups in position 2 and 6. This molecule lacks of crystallographic symmetry and the asymmetric unit contains one molecule. While at first impression, the amide groups seem to be related by a mirror plane, closer look reveales their differences. The carbon atoms of carbonyl groups do not lay in a plane of the pyridine ring and they differ in the distance to this plane (0.062 Å for C6 and 0.234 Å for C15). The molecules form bands along the c axis (Fig. 2) via system of hydrogen bonds (Table 1).

Related literature top

The title compound has been investigated for its extractive properties towards trivalent metals in a synergistic mixture with chlorinated cobalt dicarbollide. For further information, see: Alyapyshev et al. (2004, 2006); Romanovskiy et al. (2006); Babain et al. (2007); Makrlík et al. (2009, 2011). For further synthetic details, see: Nikitskaya et al. (1958); Shimada et al. (2004).

Experimental top

The title compound was synthesized as described in Shimada et al. (2004), and Nikitskaya et al. (1958). Colourless prisms were prepared by slow evaporation from an acetonitrile solution.

Refinement top

The hydrogen atoms were localized from the difference Fourier map. Despite of that, all hydrogen atoms connected to C were constrained to ideal positions. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the N,N,N',N'-tetraisobutyl-2,6-dipicolinamide, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection along the b axis with highlighted hydrogen bonds between the molecules in the bands in direction of c axis.
N,N,N',N'-Tetraisobutylpyridine-2,6-dicarboxamide top
Crystal data top
C23H39N3O2F(000) = 856
Mr = 389.57Dx = 1.082 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 15197 reflections
a = 10.5247 (2) Åθ = 3.5–67.0°
b = 17.7765 (3) ŵ = 0.54 mm1
c = 12.8773 (2) ÅT = 120 K
β = 96.877 (2)°Prism, colourless
V = 2391.91 (7) Å30.49 × 0.42 × 0.23 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
4272 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3867 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 4.2°
Rotation method data acquisition using ω scansh = 1212
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 2021
Tmin = 0.929, Tmax = 0.962l = 1515
31214 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.5367P]
where P = (Fo2 + 2Fc2)/3
4272 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C23H39N3O2V = 2391.91 (7) Å3
Mr = 389.57Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5247 (2) ŵ = 0.54 mm1
b = 17.7765 (3) ÅT = 120 K
c = 12.8773 (2) Å0.49 × 0.42 × 0.23 mm
β = 96.877 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
4272 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
3867 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.962Rint = 0.039
31214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
4272 reflectionsΔρmin = 0.14 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were localized from the difference Fourier map. Despite of that, all hydrogen atoms connected to C were constrained to ideal positions. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59347 (11)0.14933 (7)0.60811 (8)0.0311 (3)
C20.60691 (12)0.08382 (7)0.55206 (9)0.0371 (3)
H20.54080.06680.50330.044*
C30.72048 (12)0.04424 (7)0.57014 (10)0.0402 (3)
H30.73080.00110.53610.048*
C40.81870 (12)0.07328 (7)0.63991 (10)0.0371 (3)
H40.89650.04820.65290.045*
C50.79847 (11)0.14055 (7)0.68995 (9)0.0319 (3)
C60.47213 (11)0.19491 (7)0.58800 (9)0.0329 (3)
N20.40863 (9)0.21191 (6)0.66956 (7)0.0332 (2)
C70.30023 (11)0.26406 (7)0.65316 (9)0.0363 (3)
H7A0.22210.23660.66040.044*
H7B0.29390.28320.58220.044*
C80.31001 (12)0.33034 (8)0.72858 (10)0.0396 (3)
H80.30190.31150.79900.048*
C90.19691 (14)0.38209 (9)0.69475 (12)0.0509 (4)
H9A0.20510.40230.62670.061*
H9B0.19580.42250.74410.061*
H9C0.11870.35400.69220.061*
C100.43658 (14)0.37205 (8)0.73123 (12)0.0492 (3)
H10A0.50580.33830.75320.059*
H10B0.43810.41330.77950.059*
H10C0.44570.39090.66270.059*
C110.43174 (11)0.17506 (7)0.77252 (9)0.0337 (3)
H11A0.44720.21340.82610.040*
H11B0.50830.14440.77480.040*
C120.32074 (12)0.12556 (7)0.79723 (10)0.0383 (3)
H120.24460.15730.79710.046*
C130.29120 (17)0.06398 (9)0.71727 (12)0.0577 (4)
H13A0.36410.03150.71760.069*
H13B0.27150.08590.64910.069*
H13C0.21910.03530.73420.069*
C140.35334 (15)0.09285 (8)0.90645 (11)0.0492 (3)
H14A0.28060.06620.92610.059*
H14B0.37560.13280.95530.059*
H14C0.42440.05890.90680.059*
C150.90910 (11)0.17978 (7)0.75374 (10)0.0352 (3)
N30.89638 (9)0.20256 (6)0.85171 (8)0.0351 (2)
C160.99475 (11)0.25225 (7)0.90474 (10)0.0375 (3)
H16A1.06300.25810.86100.045*
H16B1.03090.22880.96960.045*
C170.94382 (13)0.32978 (7)0.92891 (10)0.0407 (3)
H170.88680.32410.98330.049*
C180.86814 (15)0.36539 (9)0.83386 (12)0.0528 (4)
H18A0.92240.37150.77960.063*
H18B0.83690.41370.85260.063*
H18C0.79720.33360.80920.063*
C191.05650 (15)0.37855 (8)0.97250 (11)0.0505 (4)
H19A1.11680.38170.92230.061*
H19B1.09730.35671.03610.061*
H19C1.02650.42810.98670.061*
C200.78661 (11)0.18394 (7)0.90704 (9)0.0357 (3)
H20A0.73050.15020.86380.043*
H20B0.73900.22960.91660.043*
C210.82297 (11)0.14717 (7)1.01368 (9)0.0355 (3)
H210.87250.18321.05980.043*
C220.69990 (13)0.12864 (8)1.05952 (10)0.0417 (3)
H22A0.65090.17381.06440.050*
H22B0.72040.10731.12800.050*
H22C0.65080.09321.01510.050*
C230.90338 (13)0.07718 (8)1.00455 (12)0.0479 (3)
H23A0.85610.04170.95890.057*
H23B0.92410.05501.07250.057*
H23C0.98080.09050.97650.057*
N10.68718 (9)0.17810 (6)0.67644 (7)0.0313 (2)
O10.43906 (9)0.21594 (6)0.49754 (6)0.0446 (2)
O21.00544 (8)0.19100 (6)0.71057 (8)0.0493 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (6)0.0360 (6)0.0262 (5)0.0027 (5)0.0038 (4)0.0022 (4)
C20.0380 (6)0.0393 (6)0.0333 (6)0.0044 (5)0.0017 (5)0.0033 (5)
C30.0435 (7)0.0359 (6)0.0420 (7)0.0001 (5)0.0077 (5)0.0060 (5)
C40.0333 (6)0.0390 (6)0.0398 (6)0.0034 (5)0.0074 (5)0.0010 (5)
C50.0288 (6)0.0388 (6)0.0286 (6)0.0008 (5)0.0061 (4)0.0018 (5)
C60.0320 (6)0.0379 (6)0.0277 (6)0.0019 (5)0.0008 (5)0.0007 (5)
N20.0284 (5)0.0426 (6)0.0275 (5)0.0028 (4)0.0008 (4)0.0013 (4)
C70.0281 (6)0.0455 (7)0.0340 (6)0.0033 (5)0.0010 (5)0.0020 (5)
C80.0372 (7)0.0482 (7)0.0340 (6)0.0029 (5)0.0067 (5)0.0000 (5)
C90.0511 (8)0.0551 (8)0.0475 (8)0.0133 (7)0.0104 (6)0.0011 (6)
C100.0484 (8)0.0493 (8)0.0498 (8)0.0065 (6)0.0057 (6)0.0062 (6)
C110.0301 (6)0.0429 (7)0.0273 (6)0.0001 (5)0.0002 (5)0.0012 (5)
C120.0304 (6)0.0401 (7)0.0440 (7)0.0004 (5)0.0035 (5)0.0019 (5)
C130.0676 (10)0.0462 (8)0.0541 (9)0.0115 (7)0.0138 (7)0.0009 (7)
C140.0543 (8)0.0517 (8)0.0430 (7)0.0097 (7)0.0122 (6)0.0033 (6)
C150.0274 (6)0.0416 (7)0.0367 (6)0.0023 (5)0.0038 (5)0.0011 (5)
N30.0262 (5)0.0459 (6)0.0329 (5)0.0011 (4)0.0019 (4)0.0031 (4)
C160.0293 (6)0.0433 (7)0.0384 (6)0.0012 (5)0.0020 (5)0.0018 (5)
C170.0454 (7)0.0428 (7)0.0346 (6)0.0012 (6)0.0076 (5)0.0022 (5)
C180.0537 (8)0.0545 (8)0.0510 (8)0.0108 (7)0.0092 (7)0.0135 (6)
C190.0655 (9)0.0442 (7)0.0423 (7)0.0099 (7)0.0081 (7)0.0019 (6)
C200.0281 (6)0.0470 (7)0.0318 (6)0.0005 (5)0.0022 (5)0.0002 (5)
C210.0345 (6)0.0388 (6)0.0314 (6)0.0003 (5)0.0027 (5)0.0028 (5)
C220.0443 (7)0.0485 (7)0.0323 (6)0.0010 (6)0.0040 (5)0.0024 (5)
C230.0421 (7)0.0436 (7)0.0568 (8)0.0036 (6)0.0010 (6)0.0029 (6)
N10.0294 (5)0.0378 (5)0.0268 (5)0.0005 (4)0.0036 (4)0.0000 (4)
O10.0461 (5)0.0595 (6)0.0272 (4)0.0104 (4)0.0001 (4)0.0047 (4)
O20.0304 (5)0.0735 (7)0.0459 (5)0.0086 (4)0.0117 (4)0.0119 (5)
Geometric parameters (Å, º) top
C1—N11.3419 (15)C13—H13B0.9600
C1—C21.3862 (17)C13—H13C0.9600
C1—C61.5084 (16)C14—H14A0.9600
C2—C31.3825 (18)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.3856 (18)C15—O21.2295 (15)
C3—H30.9300C15—N31.3469 (16)
C4—C51.3868 (18)N3—C201.4660 (15)
C4—H40.9300N3—C161.4660 (16)
C5—N11.3412 (15)C16—C171.5242 (18)
C5—C151.5125 (17)C16—H16A0.9700
C6—O11.2332 (14)C16—H16B0.9700
C6—N21.3450 (16)C17—C181.5165 (19)
N2—C71.4655 (15)C17—C191.521 (2)
N2—C111.4726 (15)C17—H170.9800
C7—C81.5225 (18)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C101.5214 (19)C19—H19A0.9600
C8—C91.5261 (19)C19—H19B0.9600
C8—H80.9800C19—H19C0.9600
C9—H9A0.9600C20—C211.5276 (17)
C9—H9B0.9600C20—H20A0.9700
C9—H9C0.9600C20—H20B0.9700
C10—H10A0.9600C21—C231.5172 (18)
C10—H10B0.9600C21—C221.5225 (18)
C10—H10C0.9600C21—H210.9800
C11—C121.5262 (17)C22—H22A0.9600
C11—H11A0.9700C22—H22B0.9600
C11—H11B0.9700C22—H22C0.9600
C12—C131.510 (2)C23—H23A0.9600
C12—C141.5226 (19)C23—H23B0.9600
C12—H120.9800C23—H23C0.9600
C13—H13A0.9600
N1—C1—C2123.28 (11)H13B—C13—H13C109.5
N1—C1—C6116.65 (10)C12—C14—H14A109.5
C2—C1—C6119.93 (10)C12—C14—H14B109.5
C3—C2—C1118.68 (11)H14A—C14—H14B109.5
C3—C2—H2120.7C12—C14—H14C109.5
C1—C2—H2120.7H14A—C14—H14C109.5
C2—C3—C4118.85 (12)H14B—C14—H14C109.5
C2—C3—H3120.6O2—C15—N3123.68 (11)
C4—C3—H3120.6O2—C15—C5116.89 (11)
C3—C4—C5118.58 (11)N3—C15—C5119.40 (10)
C3—C4—H4120.7C15—N3—C20124.05 (10)
C5—C4—H4120.7C15—N3—C16118.27 (10)
N1—C5—C4123.31 (11)C20—N3—C16117.60 (10)
N1—C5—C15116.39 (10)N3—C16—C17113.20 (10)
C4—C5—C15119.92 (10)N3—C16—H16A108.9
O1—C6—N2124.00 (11)C17—C16—H16A108.9
O1—C6—C1117.54 (10)N3—C16—H16B108.9
N2—C6—C1118.44 (10)C17—C16—H16B108.9
C6—N2—C7118.72 (10)H16A—C16—H16B107.8
C6—N2—C11124.00 (10)C18—C17—C19111.77 (12)
C7—N2—C11116.93 (9)C18—C17—C16112.09 (11)
N2—C7—C8113.93 (10)C19—C17—C16108.24 (11)
N2—C7—H7A108.8C18—C17—H17108.2
C8—C7—H7A108.8C19—C17—H17108.2
N2—C7—H7B108.8C16—C17—H17108.2
C8—C7—H7B108.8C17—C18—H18A109.5
H7A—C7—H7B107.7C17—C18—H18B109.5
C10—C8—C7112.56 (10)H18A—C18—H18B109.5
C10—C8—C9111.31 (12)C17—C18—H18C109.5
C7—C8—C9107.08 (11)H18A—C18—H18C109.5
C10—C8—H8108.6H18B—C18—H18C109.5
C7—C8—H8108.6C17—C19—H19A109.5
C9—C8—H8108.6C17—C19—H19B109.5
C8—C9—H9A109.5H19A—C19—H19B109.5
C8—C9—H9B109.5C17—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
C8—C9—H9C109.5H19B—C19—H19C109.5
H9A—C9—H9C109.5N3—C20—C21113.98 (10)
H9B—C9—H9C109.5N3—C20—H20A108.8
C8—C10—H10A109.5C21—C20—H20A108.8
C8—C10—H10B109.5N3—C20—H20B108.8
H10A—C10—H10B109.5C21—C20—H20B108.8
C8—C10—H10C109.5H20A—C20—H20B107.7
H10A—C10—H10C109.5C23—C21—C22111.16 (11)
H10B—C10—H10C109.5C23—C21—C20111.30 (11)
N2—C11—C12113.34 (9)C22—C21—C20107.93 (10)
N2—C11—H11A108.9C23—C21—H21108.8
C12—C11—H11A108.9C22—C21—H21108.8
N2—C11—H11B108.9C20—C21—H21108.8
C12—C11—H11B108.9C21—C22—H22A109.5
H11A—C11—H11B107.7C21—C22—H22B109.5
C13—C12—C14111.00 (12)H22A—C22—H22B109.5
C13—C12—C11112.09 (11)C21—C22—H22C109.5
C14—C12—C11108.62 (10)H22A—C22—H22C109.5
C13—C12—H12108.3H22B—C22—H22C109.5
C14—C12—H12108.3C21—C23—H23A109.5
C11—C12—H12108.3C21—C23—H23B109.5
C12—C13—H13A109.5H23A—C23—H23B109.5
C12—C13—H13B109.5C21—C23—H23C109.5
H13A—C13—H13B109.5H23A—C23—H23C109.5
C12—C13—H13C109.5H23B—C23—H23C109.5
H13A—C13—H13C109.5C5—N1—C1117.21 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.573.5226 (15)166
C11—H11A···O1ii0.972.553.4790 (15)160
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H39N3O2
Mr389.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.5247 (2), 17.7765 (3), 12.8773 (2)
β (°) 96.877 (2)
V3)2391.91 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.54
Crystal size (mm)0.49 × 0.42 × 0.23
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.929, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
31214, 4272, 3867
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections4272
No. of parameters261
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.972.573.5226 (15)166
C11—H11A···O1ii0.972.553.4790 (15)160
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This study was supported financially by the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Science of the Czech Republic and by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 "Environmental Aspects of Sustainable Developement of Society") and by the Czech Ministry of Education, Youth and Sports (project MSM 6046137307).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270–271.  CrossRef CAS Google Scholar
First citationAlyapyshev, M. Y., Babain, V. A., Smirnov, I. V. & Shadrin, A. Y. (2006). Radiochemistry, 48, 369–373.  Google Scholar
First citationBabain, V. A., Alyapyshev, M. Y. & Kiseleva, R. N. (2007). Radiochim. Acta, 95, 217–223.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakrlík, E., Vaňura, P., Selucký, P., Babain, V. A. & Smirnov, I. V. (2009). J. Radioanal. Nucl. Chem. 279, 743–747.  Google Scholar
First citationMakrlík, E., Vaňura, P., Selucký, P., Babain, V. A. & Smirnov, I. V. (2011). J. Radioanal. Nucl. Chem. 288, 233–238.  Google Scholar
First citationNikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obsch. Khim. 28, 161–166.  CAS Google Scholar
First citationRomanovskiy, V. N., Babain, V. A., Alyapyshev, M. Y., Smirbov, V. A., Herbst, R. S., Lan, J. D. & Todd, T. A. (2006). Separ. Sci. Technol. 41, 2111–2127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147–161.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2896-o2897
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds