organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-tert-but­ylbenz­yl)piperazine

aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: wengjianquan@yahoo.cn

(Received 14 October 2011; accepted 24 October 2011; online 29 October 2011)

The complete mol­ecule of the title compound, C26H38N2, is generated by a crystallographic inversion centre. The piperazine ring adopts a chair conformation with pseudo-equatorial substituents. In the crystal, mol­ecules inter­act only by van der Waals forces.

Related literature

For related structures, see: Ma et al. (2007[Ma, H.-F., Jia, H.-S., Qian, Y., Wen, F. & Chen, B.-L. (2007). Acta Cryst. E63, o311-o312.]); Liu et al. (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]).

[Scheme 1]

Experimental

Crystal data
  • C26H38N2

  • Mr = 378.58

  • Triclinic, [P \overline 1]

  • a = 6.162 (4) Å

  • b = 9.616 (5) Å

  • c = 10.656 (7) Å

  • α = 114.279 (19)°

  • β = 92.42 (5)°

  • γ = 96.50 (4)°

  • V = 569.1 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.08 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.985, Tmax = 0.995

  • 6003 measured reflections

  • 2686 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.01

  • 2686 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]).

Supporting information


Related literature top

For related structures, see: Ma et al. (2007); Liu et al. (2011).

Experimental top

Piperazine (50 mmol), dissolved in 20 ml 96% of ethanol, was added dropwise to a stirred solution of tert-butyl benzyl (50 mmol) at reflux. The mixture was stirred for 8 h at reflux, TLC monitored. The mixture was stirred overnight at room temperature, evaporated in vacuum and the residue was purified by recrystallization from ethanol to give the title compound, (I). Colourless prisms of (I) were grown from ethanol.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
1,4-Bis(4-tert-butylbenzyl)piperazine top
Crystal data top
C26H38N2Z = 1
Mr = 378.58F(000) = 208
Triclinic, P1Dx = 1.105 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.162 (4) ÅCell parameters from 1980 reflections
b = 9.616 (5) Åθ = 2.1–27.9°
c = 10.656 (7) ŵ = 0.06 mm1
α = 114.279 (19)°T = 113 K
β = 92.42 (5)°Prism, colorless
γ = 96.50 (4)°0.24 × 0.20 × 0.08 mm
V = 569.1 (6) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
2686 independent reflections
Radiation source: rotating anode1481 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.041
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 87
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.985, Tmax = 0.995l = 1314
6003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
2686 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C26H38N2γ = 96.50 (4)°
Mr = 378.58V = 569.1 (6) Å3
Triclinic, P1Z = 1
a = 6.162 (4) ÅMo Kα radiation
b = 9.616 (5) ŵ = 0.06 mm1
c = 10.656 (7) ÅT = 113 K
α = 114.279 (19)°0.24 × 0.20 × 0.08 mm
β = 92.42 (5)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2686 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1481 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.995Rint = 0.041
6003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2686 reflectionsΔρmin = 0.18 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.04698 (14)0.10740 (11)0.64238 (9)0.0276 (3)
C11.19772 (18)0.10329 (14)0.53912 (12)0.0304 (3)
H1A1.35030.13540.58350.036*
H1B1.16440.17650.49990.036*
C20.82344 (17)0.05712 (14)0.57527 (11)0.0296 (3)
H2A0.78380.12950.53660.036*
H2B0.72050.05820.64440.036*
C31.0687 (2)0.26252 (14)0.75487 (12)0.0349 (3)
H3A1.01140.33280.71920.042*
H3B1.22600.30060.78690.042*
C40.94701 (19)0.26622 (13)0.87580 (11)0.0283 (3)
C50.7673 (2)0.34155 (14)0.91236 (12)0.0354 (3)
H50.71380.38990.85790.042*
C60.66197 (19)0.34862 (14)1.02736 (12)0.0325 (3)
H60.53770.40121.04920.039*
C70.73370 (17)0.28090 (12)1.11086 (11)0.0244 (3)
C80.91275 (17)0.20106 (13)1.07092 (12)0.0301 (3)
H80.96430.15001.12350.036*
C91.01657 (18)0.19463 (14)0.95659 (12)0.0316 (3)
H91.13850.13980.93280.038*
C100.62717 (18)0.28918 (14)1.24015 (12)0.0292 (3)
C110.5127 (2)0.12960 (15)1.21512 (15)0.0519 (4)
H11A0.40280.09231.13500.078*
H11B0.44040.13561.29700.078*
H11C0.62120.05841.19730.078*
C120.45875 (19)0.40197 (14)1.28026 (12)0.0360 (3)
H12A0.53090.50531.29760.054*
H12B0.39640.40451.36410.054*
H12C0.34130.36831.20470.054*
C130.8046 (2)0.34597 (17)1.36335 (12)0.0448 (4)
H13A0.90990.27231.34410.067*
H13B0.73560.35471.44690.067*
H13C0.88140.44701.37740.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0278 (5)0.0292 (6)0.0238 (5)0.0025 (4)0.0087 (4)0.0089 (5)
C10.0275 (6)0.0365 (8)0.0272 (6)0.0022 (5)0.0094 (5)0.0132 (6)
C20.0304 (7)0.0347 (7)0.0274 (6)0.0078 (5)0.0107 (5)0.0151 (6)
C30.0433 (7)0.0305 (7)0.0271 (7)0.0004 (6)0.0118 (6)0.0090 (6)
C40.0344 (7)0.0234 (6)0.0229 (6)0.0004 (5)0.0076 (5)0.0061 (5)
C50.0478 (8)0.0366 (8)0.0275 (7)0.0138 (6)0.0079 (6)0.0167 (6)
C60.0359 (7)0.0354 (7)0.0291 (7)0.0147 (6)0.0092 (5)0.0134 (6)
C70.0269 (6)0.0216 (6)0.0204 (6)0.0006 (5)0.0029 (5)0.0051 (5)
C80.0328 (7)0.0318 (7)0.0276 (6)0.0060 (5)0.0027 (5)0.0139 (6)
C90.0297 (7)0.0330 (7)0.0312 (7)0.0079 (5)0.0099 (6)0.0111 (6)
C100.0345 (7)0.0302 (7)0.0242 (6)0.0061 (5)0.0088 (5)0.0118 (5)
C110.0698 (10)0.0356 (8)0.0532 (9)0.0059 (7)0.0367 (8)0.0192 (7)
C120.0390 (7)0.0395 (8)0.0278 (7)0.0099 (6)0.0111 (6)0.0105 (6)
C130.0510 (8)0.0611 (10)0.0255 (7)0.0164 (7)0.0073 (6)0.0190 (7)
Geometric parameters (Å, º) top
N1—C21.4575 (17)C7—C81.3968 (16)
N1—C11.4609 (17)C7—C101.5275 (18)
N1—C31.4665 (16)C8—C91.3821 (17)
C1—C2i1.5089 (17)C8—H80.9500
C1—H1A0.9900C9—H90.9500
C1—H1B0.9900C10—C111.5251 (19)
C2—C1i1.5090 (17)C10—C121.5321 (17)
C2—H2A0.9900C10—C131.540 (2)
C2—H2B0.9900C11—H11A0.9800
C3—C41.5079 (18)C11—H11B0.9800
C3—H3A0.9900C11—H11C0.9800
C3—H3B0.9900C12—H12A0.9800
C4—C51.3742 (17)C12—H12B0.9800
C4—C91.3863 (17)C12—H12C0.9800
C5—C61.3916 (18)C13—H13A0.9800
C5—H50.9500C13—H13B0.9800
C6—C71.3855 (17)C13—H13C0.9800
C6—H60.9500
C2—N1—C1109.05 (10)C8—C7—C10119.97 (11)
C2—N1—C3111.16 (11)C9—C8—C7121.48 (12)
C1—N1—C3110.69 (10)C9—C8—H8119.3
N1—C1—C2i110.36 (10)C7—C8—H8119.3
N1—C1—H1A109.6C8—C9—C4121.58 (11)
C2i—C1—H1A109.6C8—C9—H9119.2
N1—C1—H1B109.6C4—C9—H9119.2
C2i—C1—H1B109.6C11—C10—C7109.50 (10)
H1A—C1—H1B108.1C11—C10—C12108.72 (11)
N1—C2—C1i110.74 (11)C7—C10—C12112.36 (11)
N1—C2—H2A109.5C11—C10—C13109.56 (12)
C1i—C2—H2A109.5C7—C10—C13109.51 (10)
N1—C2—H2B109.5C12—C10—C13107.14 (11)
C1i—C2—H2B109.5C10—C11—H11A109.5
H2A—C2—H2B108.1C10—C11—H11B109.5
N1—C3—C4112.51 (11)H11A—C11—H11B109.5
N1—C3—H3A109.1C10—C11—H11C109.5
C4—C3—H3A109.1H11A—C11—H11C109.5
N1—C3—H3B109.1H11B—C11—H11C109.5
C4—C3—H3B109.1C10—C12—H12A109.5
H3A—C3—H3B107.8C10—C12—H12B109.5
C5—C4—C9117.25 (11)H12A—C12—H12B109.5
C5—C4—C3122.29 (12)C10—C12—H12C109.5
C9—C4—C3120.46 (11)H12A—C12—H12C109.5
C4—C5—C6121.51 (12)H12B—C12—H12C109.5
C4—C5—H5119.2C10—C13—H13A109.5
C6—C5—H5119.2C10—C13—H13B109.5
C7—C6—C5121.68 (11)H13A—C13—H13B109.5
C7—C6—H6119.2C10—C13—H13C109.5
C5—C6—H6119.2H13A—C13—H13C109.5
C6—C7—C8116.46 (11)H13B—C13—H13C109.5
C6—C7—C10123.57 (11)
C2—N1—C1—C2i58.15 (14)C5—C6—C7—C10178.35 (10)
C3—N1—C1—C2i179.26 (9)C6—C7—C8—C92.03 (16)
C1—N1—C2—C1i58.37 (14)C10—C7—C8—C9178.31 (10)
C3—N1—C2—C1i179.32 (10)C7—C8—C9—C40.42 (18)
C2—N1—C3—C468.92 (14)C5—C4—C9—C81.27 (17)
C1—N1—C3—C4169.72 (9)C3—C4—C9—C8177.64 (10)
N1—C3—C4—C5113.26 (14)C6—C7—C10—C11111.43 (14)
N1—C3—C4—C967.89 (15)C8—C7—C10—C1168.21 (14)
C9—C4—C5—C61.30 (17)C6—C7—C10—C129.49 (16)
C3—C4—C5—C6177.58 (11)C8—C7—C10—C12170.87 (10)
C4—C5—C6—C70.36 (19)C6—C7—C10—C13128.42 (13)
C5—C6—C7—C82.00 (17)C8—C7—C10—C1351.94 (14)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H38N2
Mr378.58
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.162 (4), 9.616 (5), 10.656 (7)
α, β, γ (°)114.279 (19), 92.42 (5), 96.50 (4)
V3)569.1 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.24 × 0.20 × 0.08
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.985, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6003, 2686, 1481
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.01
No. of reflections2686
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

 

References

First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMa, H.-F., Jia, H.-S., Qian, Y., Wen, F. & Chen, B.-L. (2007). Acta Cryst. E63, o311–o312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds