organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-2-{[4-(3,5-di­chloro­pyridin-2-yl­­oxy)phenyl­imino]­meth­yl}phenol

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and bSchool of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, People's Republic of China
*Correspondence e-mail: wujunwu@zju.edu.cn

(Received 24 September 2011; accepted 10 October 2011; online 22 October 2011)

In the title mol­ecule, C18H11Cl3N2O2, the central benzene ring is oriented at 8.44 (12) and 70.57 (11)° with respect to the terminal chloro­phenol and dichloro­pyridine rings, respectively. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif. In the crystal, ππ stacking between parallel pyridine rings is observed [centroid–centroid distance = 3.6561 (14) Å].

Related literature

For general background to the pharmacological activity of Schiff base compounds, see: Shapiro (1998[Shapiro, H. K. (1998). Am. J. Ther. 5, 323-353.]); Venugopal & Jayashree (2008[Venugopal, K. N. & Jayashree, B. S. (2008). Indian J. Pharm. Sci. 70, 88-91.]); Pandey et al. (2003[Pandey, S. N., Lakshmi, V. S. & Pandey, A. (2003). Indian J. Pharm. Sci. 65, 213-222.]); Bhat et al. (2005[Bhat, M. A., Imran, M., Khan, S. A. & Siddiqui, N. (2005). J. Pharm. Sci. 67, 151-159.]); Wadher et al. (2009[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22-33.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1933.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11Cl3N2O2

  • Mr = 393.64

  • Monoclinic, P 21 /c

  • a = 13.8981 (7) Å

  • b = 11.7006 (8) Å

  • c = 10.5034 (5) Å

  • β = 95.318 (5)°

  • V = 1700.67 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.38 × 0.36 × 0.29 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.817, Tmax = 0.856

  • 7882 measured reflections

  • 3107 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.03

  • 3107 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.586 (3) 147

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In 2011, much attention has been focused on the biological properties of Schiff bases compounds, Schiff base ligands may contain a variety of substituents with different electron-donating or electron-withdrawing groups and therefore may have interesting chemical properties. They have attracted particular interest due to their biological activities (Shapiro, 1998). They have been found to posses the pharmacological activities such as antimalarial, anticancer, antibacterial (Venugopal & Jayashree, 2008), antifungal (Pandey et al., 2003), antitubercular (Bhat et al., 2005), anti-inflammatoryand antimicrobial (Wadher et al., 2009) properties.

The crystal structures of a number of Schiff bases compounds have also been determined. Herein, we report on the synthesis and crystal structure of a new Schiff bases compound, prepared by the reaction of 5-chloro-2-hydroxybenzaldehyde with 4-(3,5-dichloropyridin-2-yloxy) benzenamine.

In the title molecule (Fig. 1), the C8-benzene ring forms dihedral angles of 8.5 (2)° and 70.6 (1)° with the chlorophenol and dichloropyridine rings, respectively. The title molecule exists in trans configuration with respect to the C7=N1 bond [C7=N1 = 1.275 (3) Å]. In the crystal packing, π-π stacking interactions between the centroid of C1—C6 (Cg1) and C8—C13 (Cg2) benzene rings, with Cg1···Cg2i distance of 3.792 (2) Å [symmetry code: (i) -x, 1 - y, 2 - z] are observed. N2/C14—C18 (Cg3)···Cg3ii distance of 3.656 (1)Å [symmetry code: (ii), 1 - x,1 - y,1 - z]. The molecular structure is stabilized by an intramolecular O–H···N hydrogen bond, which generates an S(6) ring motif (Table 1). No significant intermolecular hydrogen bonds are observed.

Related literature top

For general background to the pharmacological activity of Schiff base compounds, see: Shapiro (1998); Venugopal & Jayashree (2008); Pandey et al. (2003); Bhat et al. (2005); Wadher et al. (2009). For a related structure, see: Fun et al. (2011).

Experimental top

The title compound was prepared by the condensation reaction of 5-chloro-2-hydroxybenzaldehyde (5 mmol, 0.78 g) and 4-(3,5-dichloropyridin-2-yloxy)benzenamine (5 mmol, 1.27 g) in anhydrous methanol (30 ml) at ambient temperature. The solution was magnetically stirred at ambient temperature for 10 min until it turned to yellow. Yellow single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for 7 d.

Refinement top

H atoms were placed in idealized positions (C—H = 0.93 Å, O—H= 0.82 Å), and refined as riding, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(E)-4-Chloro-2-{[4-(3,5-dichloropyridin-2-yloxy)phenylimino]methyl}phenol top
Crystal data top
C18H11Cl3N2O2F(000) = 800
Mr = 393.64Dx = 1.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1892 reflections
a = 13.8981 (7) Åθ = 2.9–29.5°
b = 11.7006 (8) ŵ = 0.55 mm1
c = 10.5034 (5) ÅT = 293 K
β = 95.318 (5)°Block, yellow
V = 1700.67 (16) Å30.38 × 0.36 × 0.29 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3107 independent reflections
Radiation source: fine-focus sealed tube2186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 148
Tmin = 0.817, Tmax = 0.856l = 1212
7882 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.5849P]
where P = (Fo2 + 2Fc2)/3
3107 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H11Cl3N2O2V = 1700.67 (16) Å3
Mr = 393.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8981 (7) ŵ = 0.55 mm1
b = 11.7006 (8) ÅT = 293 K
c = 10.5034 (5) Å0.38 × 0.36 × 0.29 mm
β = 95.318 (5)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3107 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2186 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.856Rint = 0.025
7882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3107 reflectionsΔρmin = 0.26 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24721 (6)0.26343 (9)1.31374 (10)0.1009 (3)
Cl20.53771 (6)0.21299 (7)0.55024 (6)0.0716 (2)
Cl30.41754 (6)0.53738 (7)0.20843 (6)0.0723 (2)
O10.08837 (14)0.54210 (18)1.22171 (19)0.0727 (6)
H10.11400.51961.15910.109*
O20.37377 (13)0.29274 (16)0.67705 (16)0.0629 (5)
N10.11798 (14)0.40766 (18)1.03385 (17)0.0464 (5)
N20.32327 (15)0.4354 (2)0.53329 (19)0.0570 (6)
C10.01103 (17)0.4760 (2)1.2388 (2)0.0503 (6)
C20.0441 (2)0.5020 (3)1.3378 (2)0.0618 (7)
H20.02750.56461.38990.074*
C30.1226 (2)0.4374 (3)1.3606 (3)0.0635 (8)
H30.15920.45601.42740.076*
C40.14696 (18)0.3448 (3)1.2841 (3)0.0605 (7)
C50.09479 (18)0.3184 (2)1.1840 (2)0.0556 (6)
H50.11300.25631.13200.067*
C60.01468 (16)0.3832 (2)1.1588 (2)0.0452 (6)
C70.04132 (17)0.3533 (2)1.0541 (2)0.0479 (6)
H70.02090.29321.00040.057*
C80.17777 (16)0.3761 (2)0.9376 (2)0.0439 (6)
C90.16860 (18)0.2763 (2)0.8667 (2)0.0587 (7)
H90.11920.22510.87960.070*
C100.23239 (19)0.2524 (3)0.7770 (2)0.0580 (7)
H100.22580.18560.72900.070*
C110.30536 (18)0.3275 (2)0.7592 (2)0.0506 (6)
C120.31653 (19)0.4262 (2)0.8286 (3)0.0605 (7)
H120.36650.47660.81590.073*
C130.25235 (18)0.4498 (2)0.9179 (2)0.0545 (6)
H130.25960.51670.96570.065*
C140.38386 (18)0.3526 (2)0.5682 (2)0.0483 (6)
C150.45916 (17)0.3205 (2)0.4973 (2)0.0463 (6)
C160.47057 (17)0.3767 (2)0.3851 (2)0.0475 (6)
H160.51990.35710.33510.057*
C170.40660 (18)0.4631 (2)0.3490 (2)0.0495 (6)
C180.33466 (19)0.4902 (2)0.4238 (2)0.0580 (7)
H180.29210.54880.39780.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (5)0.0995 (7)0.1413 (8)0.0127 (5)0.0547 (5)0.0032 (6)
Cl20.0835 (5)0.0768 (5)0.0579 (4)0.0333 (4)0.0250 (3)0.0073 (4)
Cl30.0867 (5)0.0815 (6)0.0517 (4)0.0132 (4)0.0228 (3)0.0158 (3)
O10.0733 (13)0.0749 (15)0.0738 (13)0.0208 (11)0.0273 (10)0.0201 (11)
O20.0720 (12)0.0679 (13)0.0535 (10)0.0212 (10)0.0307 (9)0.0124 (9)
N10.0459 (11)0.0541 (13)0.0406 (10)0.0016 (10)0.0124 (9)0.0025 (9)
N20.0572 (13)0.0677 (15)0.0487 (12)0.0133 (11)0.0180 (10)0.0065 (11)
C10.0479 (14)0.0581 (17)0.0461 (13)0.0003 (12)0.0102 (11)0.0045 (12)
C20.0675 (18)0.0693 (19)0.0505 (15)0.0029 (15)0.0158 (13)0.0090 (14)
C30.0595 (17)0.080 (2)0.0543 (15)0.0136 (15)0.0251 (13)0.0055 (15)
C40.0474 (14)0.0638 (19)0.0734 (18)0.0041 (13)0.0226 (13)0.0107 (15)
C50.0516 (14)0.0543 (16)0.0623 (16)0.0013 (13)0.0120 (13)0.0016 (13)
C60.0448 (13)0.0490 (15)0.0426 (12)0.0053 (11)0.0082 (10)0.0051 (11)
C70.0503 (14)0.0495 (15)0.0445 (13)0.0045 (12)0.0079 (11)0.0029 (11)
C80.0442 (13)0.0513 (15)0.0372 (12)0.0039 (11)0.0083 (10)0.0028 (11)
C90.0523 (15)0.0645 (19)0.0617 (16)0.0102 (13)0.0188 (13)0.0100 (14)
C100.0607 (16)0.0637 (18)0.0505 (15)0.0014 (14)0.0097 (12)0.0125 (13)
C110.0549 (15)0.0577 (17)0.0415 (13)0.0128 (13)0.0164 (11)0.0074 (12)
C120.0572 (15)0.0607 (19)0.0674 (17)0.0055 (13)0.0259 (13)0.0009 (14)
C130.0580 (15)0.0552 (17)0.0523 (14)0.0028 (13)0.0157 (12)0.0065 (12)
C140.0541 (14)0.0533 (16)0.0393 (13)0.0034 (12)0.0139 (11)0.0016 (11)
C150.0499 (13)0.0476 (15)0.0426 (12)0.0033 (11)0.0104 (11)0.0053 (11)
C160.0478 (13)0.0570 (16)0.0398 (12)0.0020 (12)0.0149 (11)0.0093 (11)
C170.0555 (15)0.0561 (16)0.0377 (12)0.0022 (12)0.0080 (11)0.0001 (11)
C180.0603 (16)0.0653 (18)0.0499 (15)0.0129 (14)0.0129 (13)0.0074 (13)
Geometric parameters (Å, º) top
Cl1—C41.739 (3)C5—H50.9300
Cl2—C151.724 (2)C6—C71.448 (3)
Cl3—C171.732 (2)C7—H70.9300
O1—C11.349 (3)C8—C131.379 (3)
O1—H10.8200C8—C91.384 (3)
O2—C141.359 (3)C9—C101.381 (3)
O2—C111.402 (3)C9—H90.9300
N1—C71.275 (3)C10—C111.368 (4)
N1—C81.416 (3)C10—H100.9300
N2—C141.314 (3)C11—C121.367 (4)
N2—C181.339 (3)C12—C131.381 (3)
C1—C21.381 (3)C12—H120.9300
C1—C61.400 (3)C13—H130.9300
C2—C31.366 (4)C14—C151.391 (3)
C2—H20.9300C15—C161.371 (3)
C3—C41.372 (4)C16—C171.376 (3)
C3—H30.9300C16—H160.9300
C4—C51.366 (3)C17—C181.365 (3)
C5—C61.393 (3)C18—H180.9300
C1—O1—H1109.5C10—C9—H9119.8
C14—O2—C11119.80 (19)C8—C9—H9119.8
C7—N1—C8122.9 (2)C11—C10—C9119.6 (3)
C14—N2—C18118.0 (2)C11—C10—H10120.2
O1—C1—C2118.6 (2)C9—C10—H10120.2
O1—C1—C6121.8 (2)C12—C11—C10121.2 (2)
C2—C1—C6119.6 (2)C12—C11—O2121.6 (2)
C3—C2—C1121.1 (3)C10—C11—O2116.9 (2)
C3—C2—H2119.4C11—C12—C13118.9 (2)
C1—C2—H2119.4C11—C12—H12120.6
C2—C3—C4119.5 (3)C13—C12—H12120.6
C2—C3—H3120.3C8—C13—C12121.2 (2)
C4—C3—H3120.3C8—C13—H13119.4
C5—C4—C3120.6 (3)C12—C13—H13119.4
C5—C4—Cl1120.3 (2)N2—C14—O2120.1 (2)
C3—C4—Cl1119.0 (2)N2—C14—C15123.0 (2)
C4—C5—C6120.9 (3)O2—C14—C15116.9 (2)
C4—C5—H5119.5C16—C15—C14118.9 (2)
C6—C5—H5119.5C16—C15—Cl2120.45 (18)
C5—C6—C1118.2 (2)C14—C15—Cl2120.63 (18)
C5—C6—C7120.6 (2)C15—C16—C17117.8 (2)
C1—C6—C7121.2 (2)C15—C16—H16121.1
N1—C7—C6121.5 (2)C17—C16—H16121.1
N1—C7—H7119.2C18—C17—C16120.0 (2)
C6—C7—H7119.2C18—C17—Cl3120.1 (2)
C13—C8—C9118.7 (2)C16—C17—Cl3119.89 (19)
C13—C8—N1116.3 (2)N2—C18—C17122.3 (2)
C9—C8—N1125.0 (2)N2—C18—H18118.8
C10—C9—C8120.3 (2)C17—C18—H18118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.586 (3)147

Experimental details

Crystal data
Chemical formulaC18H11Cl3N2O2
Mr393.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.8981 (7), 11.7006 (8), 10.5034 (5)
β (°) 95.318 (5)
V3)1700.67 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.38 × 0.36 × 0.29
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.817, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
7882, 3107, 2186
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.03
No. of reflections3107
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.586 (3)146.8
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (grant No. 31071720) and the Natural Science Foundation of Zhejiang Province, China (grant No. D3080282).

References

First citationBhat, M. A., Imran, M., Khan, S. A. & Siddiqui, N. (2005). J. Pharm. Sci. 67, 151–159.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011). Acta Cryst. E67, o1933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, S. N., Lakshmi, V. S. & Pandey, A. (2003). Indian J. Pharm. Sci. 65, 213–222.  Google Scholar
First citationShapiro, H. K. (1998). Am. J. Ther. 5, 323–353.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopal, K. N. & Jayashree, B. S. (2008). Indian J. Pharm. Sci. 70, 88–91.  Web of Science PubMed Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22–33.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds