metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1627-m1628

Di­chlorido[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)ethanamine-κN]zinc(II)

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 18 October 2011; accepted 24 October 2011; online 29 October 2011)

The amine title complex, [ZnCl2(C7H13N3)], resulted from imine hydrolysis in a Schiff base compound. The Zn metal atom has a distorted tetra­hedral geometry with the most significant deviation identified in the magnitude of the N—Zn—N angle. This deviation stems from the participation of the Zn and N atoms in a six-membered metallocyclic ring. The latter is in an approximate screw-boat conformation. Two strong N—H⋯Cl hydrogen bonds link the mol­ecules into ribbons propagating along the b-axis direction. The ribbons contain two second-order hydrogen-bonded motifs: a chain and a ring. The chain described by the graph set notation C22(6) is formed by one hydrogen bond going in the forward direction (donor to acceptor) and the other in the backward direction (acceptor to donor). In the ring motif R22(8), both hydrogen bonds propagate in the forward direction.

Related literature

For imine hydrolysis in Schiff base compounds, see: Guzei et al. (2010[Guzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89-m96.]); Czaun et al. (2010[Czaun, M., Nelana, S. M., Guzei, I. A., Hasselgren, C., Håkensson, M., Jagner, S., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3102-3112.]); Bu et al. (1997[Bu, X. R., Jackson, C. R., Van Derveer, D., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991-3001.]); Koner & Ray (2008[Koner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122-9124.]); Sinha et al. (2003[Sinha, M., Ray, M., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617-624.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Related structures were found from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For ring analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C7H13N3)]

  • Mr = 275.47

  • Monoclinic, P 21 /n

  • a = 9.060 (3) Å

  • b = 8.894 (2) Å

  • c = 14.260 (4) Å

  • β = 97.95 (3)°

  • V = 1138.1 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.00 mm−1

  • T = 100 K

  • 0.48 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker-AXS Inc., Madison, WI, USA.]) Tmin = 0.134, Tmax = 0.321

  • 16711 measured reflections

  • 2123 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.03

  • 2123 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.0214 (13)
Zn1—N3 2.0461 (14)
Zn1—Cl1 2.2266 (6)
Zn1—Cl2 2.2512 (6)
N1—Zn1—N3 96.88 (6)
N1—Zn1—Cl1 113.62 (4)
N3—Zn1—Cl1 114.24 (4)
N1—Zn1—Cl2 114.15 (4)
N3—Zn1—Cl2 106.77 (4)
Cl1—Zn1—Cl2 110.44 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl2i 0.92 2.41 3.3073 (15) 165
N3—H3B⋯Cl1ii 0.92 2.43 3.2620 (15) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker-AXS Inc., Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT-Plus. Bruker-AXS Inc., Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL, FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and INSerter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Imine hydrolysis in Schiff base compounds is quite common. It is usually driven by traces of water and the presence of acidic metal ions, especially in the case of the first row transition metal chlorides such as CoII (Guzei et al., 2010), NiII (Czaun et al., 2010) and CuII (Bu et al., 1997; Czaun et al., 2010; Koner & Ray, 2008; Sinha et al., 2003). In a recent attempt to prepare a ZnII complex from the reaction of 2-{[2-(3,5-dimethylpyrazol-1-yl)ethylimino]}-4,6-ditertbutylphenol with zinc(II) chloride, we isolated the title compound (I), a hydrolysis product of the imine to an amine.

The coordination environment of the central metal Zn1 is distorted tetrahedral with angles ranging from 96.88 (6)° to 114.24 (4)°. The dihedral angle between the planes defined by atoms Zn1, N1, N3 and Zn1, Cl1, Cl2 spans 86.77 (4)°. The most significant deviations from the ideal tetrahedral geometry is observed in the N1—Zn1—N3 angle of 96.88 (6)°. This significant deviation is due to its inclusion in a six-membered metallocyclic ring. This ring, Zn1—N1—N2—C6—C7—N3, approaches a screw-boat conformation 5S4 with the puckering coordinates θ = 74.44 (12)° and ϕ = 203.47 (13)° (Cremer & Pople, 1975). Data mining of the Cambridge Structural Database (August 2011 update; Allen, 2002) revealed 55 complexes in which a zinc atom is bonded to two chlorine atoms, one nitrogen atom of a pyrazole, and one other nitrogen atom. The complexes may contain metallocyclic rings with five, six, seven, eight, ten, thirteen, or sixteen atoms as well as no metallocyclic ring. The degree of deviation of the N—Zn—N bond angle from the ideal tetrahedral value depends greatly on the number of atoms in the metallocyclic ring. For the 22 complexes in which no ring is formed, the N—Zn—N angle averages of 111 (8)°. The eight complexes with five-membered metallocyclic rings have an average N—Zn—N angle of 79.3 (7)°. For the 18 complexes with six-membered metallocyclic rings the N—Zn—N angle averages 94 (3)°, which compares well to that of compound (I). The N—Zn—N angles in the seven complexes that have greater than six-membered metallocyclic rings average 107 (3)°. All other geometrical parameters of (I) are typical as confirmed by a Mogul structural check (Bruno et al., 2002).

Two strong intermolecular hydrogen bonding interactions N3—H3b···Cl1 [-x + 3/2, y + 1/2, -z + 1/2] (a) and N3—H3a···Cl2 [-x + 3/2, y - 1/2, -z + 1/2] (b) link molecules of (I) in chains parallel to the b axis. The chains form an motif (the arrows above the bond designators show the direction of the bond; the forward arrow corresponds to the donor-to-acceptor direction whereas the backward arrow to the acceptor-to-donor direction) described by the second order graph set notation C22(6) (Bernstein et al. 1995). The hydrogen bonds also form an ring motif described by the second order graph set notation R22(8) with both bonds in the forward direction.

Related literature top

For imine hydrolysis in Schiff base compounds, see: Guzei et al. (2010); Czaun et al. (2010); Bu et al. (1997); Koner et al. (2008); Sinha et al. (2003). For graph-set analysis, see: Bernstein et al. (1995). Related structures were found from the Cambridge Structural Database (Allen, 2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For information on ring puckering, see: Cremer & Pople (1975).

Experimental top

A CH2Cl2 solution (10 ml) of 2-{[2-(3,5-dimethylpyrazol-1-yl)ethylimino]}-4,6-ditertbutylphenol (0.90 g, 2.7 mmol) was added to a CH2Cl2 suspension (20 ml) of ZnCl2 (0.35 g, 2.6 mmol) and stirred at room temperature for 18 h after which a colorless solution was formed. The solution was concentrated in vacuo to about 10 ml and hexane added (5 ml) and kept at -4°C to produce crystals of the title compound. Yield: 0.33 g (49%). Anal. Calcd for C7H13Cl2N3Zn: C, 32.15; H, 5.01; N, 10.71. Found: C, 32.24; H, 4.89; N, 10.61%.

Refinement top

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for H atoms attached to nitrogen atoms and Uiso(H) = 1.2 times Ueq(bearing atom) for all other H atoms. Default effective X—H distances for T = -173.0° C C(sp 3)–2H=0.99, C(sp 3)–3H=0.98, C(sp 2)–H=0.95, N-2H=0.92 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level.
Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)ethanamine- κN]zinc(II) top
Crystal data top
[ZnCl2(C7H13N3)]F(000) = 560
Mr = 275.47Dx = 1.608 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 9893 reflections
a = 9.060 (3) Åθ = 4.9–69.5°
b = 8.894 (2) ŵ = 7.00 mm1
c = 14.260 (4) ÅT = 100 K
β = 97.95 (3)°Block, colourless
V = 1138.1 (6) Å30.48 × 0.28 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2123 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
0.50° ω and 0.5 ° ϕ scansθmax = 70.0°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.134, Tmax = 0.321k = 1010
16711 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.030P)2 + 0.6489P]
where P = (Fo2 + 2Fc2)/3
2123 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[ZnCl2(C7H13N3)]V = 1138.1 (6) Å3
Mr = 275.47Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.060 (3) ŵ = 7.00 mm1
b = 8.894 (2) ÅT = 100 K
c = 14.260 (4) Å0.48 × 0.28 × 0.21 mm
β = 97.95 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2053 reflections with I > 2σ(I)
Tmin = 0.134, Tmax = 0.321Rint = 0.019
16711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2123 reflectionsΔρmin = 0.19 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.57494 (2)0.15806 (2)0.280022 (13)0.01647 (8)
Cl10.48746 (4)0.06529 (4)0.22820 (3)0.02530 (10)
Cl20.53128 (4)0.33130 (4)0.16443 (3)0.02379 (10)
N10.50886 (14)0.22053 (14)0.40401 (8)0.0181 (3)
N20.60299 (14)0.29662 (15)0.47094 (9)0.0190 (3)
N30.79922 (14)0.16142 (14)0.32554 (9)0.0197 (3)
H3A0.83690.06700.31730.030*
H3B0.84330.22640.28760.030*
C10.25483 (18)0.1137 (2)0.38927 (12)0.0251 (3)
H1A0.20640.17910.33890.030*
H1C0.18350.08760.43240.030*
H1B0.28940.02170.36130.030*
C20.38499 (17)0.19396 (18)0.44299 (11)0.0198 (3)
C30.40007 (18)0.25371 (18)0.53388 (11)0.0226 (3)
H30.32820.25080.57650.027*
C40.54005 (18)0.31816 (18)0.55017 (11)0.0213 (3)
C50.61843 (19)0.3966 (2)0.63528 (11)0.0263 (3)
H5B0.54980.40940.68210.032*
H5A0.65270.49530.61680.032*
H5C0.70420.33640.66280.032*
C60.75227 (18)0.33978 (18)0.45274 (12)0.0229 (3)
H6B0.80570.38820.51010.027*
H6A0.74330.41450.40080.027*
C70.84300 (17)0.2068 (2)0.42600 (11)0.0233 (3)
H7B0.95010.23360.43600.028*
H7A0.82860.12070.46780.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01851 (12)0.01557 (12)0.01536 (12)0.00055 (7)0.00246 (8)0.00065 (7)
Cl10.02428 (19)0.01691 (18)0.0344 (2)0.00008 (14)0.00302 (15)0.00614 (15)
Cl20.0279 (2)0.02177 (19)0.02037 (19)0.00225 (14)0.00132 (15)0.00530 (13)
N10.0190 (6)0.0199 (7)0.0151 (6)0.0028 (5)0.0018 (5)0.0018 (5)
N20.0185 (6)0.0220 (6)0.0164 (6)0.0032 (5)0.0024 (5)0.0029 (5)
N30.0200 (6)0.0183 (7)0.0213 (7)0.0008 (5)0.0043 (5)0.0008 (5)
C10.0209 (8)0.0301 (9)0.0247 (8)0.0056 (7)0.0044 (6)0.0018 (7)
C20.0202 (7)0.0201 (7)0.0190 (7)0.0001 (6)0.0030 (6)0.0031 (6)
C30.0240 (8)0.0268 (8)0.0181 (7)0.0012 (6)0.0066 (6)0.0011 (6)
C40.0247 (8)0.0220 (7)0.0173 (7)0.0012 (6)0.0036 (6)0.0004 (6)
C50.0296 (8)0.0311 (9)0.0182 (7)0.0024 (7)0.0036 (6)0.0043 (7)
C60.0198 (8)0.0282 (9)0.0211 (8)0.0062 (6)0.0041 (6)0.0037 (6)
C70.0186 (7)0.0313 (9)0.0197 (7)0.0020 (6)0.0011 (6)0.0022 (7)
Geometric parameters (Å, º) top
Zn1—N12.0214 (13)C1—H1B0.9800
Zn1—N32.0461 (14)C2—C31.390 (2)
Zn1—Cl12.2266 (6)C3—C41.382 (2)
Zn1—Cl22.2512 (6)C3—H30.9500
N1—C21.340 (2)C4—C51.492 (2)
N1—N21.3679 (18)C5—H5B0.9800
N2—C41.348 (2)C5—H5A0.9800
N2—C61.463 (2)C5—H5C0.9800
N3—C71.489 (2)C6—C71.519 (2)
N3—H3A0.9200C6—H6B0.9900
N3—H3B0.9200C6—H6A0.9900
C1—C21.496 (2)C7—H7B0.9900
C1—H1A0.9800C7—H7A0.9900
C1—H1C0.9800
N1—Zn1—N396.88 (6)C3—C2—C1128.97 (14)
N1—Zn1—Cl1113.62 (4)C4—C3—C2106.55 (14)
N3—Zn1—Cl1114.24 (4)C4—C3—H3126.7
N1—Zn1—Cl2114.15 (4)C2—C3—H3126.7
N3—Zn1—Cl2106.77 (4)N2—C4—C3106.56 (14)
Cl1—Zn1—Cl2110.44 (3)N2—C4—C5122.65 (14)
C2—N1—N2105.95 (12)C3—C4—C5130.79 (15)
C2—N1—Zn1132.88 (11)C4—C5—H5B109.5
N2—N1—Zn1120.99 (10)C4—C5—H5A109.5
C4—N2—N1111.10 (13)H5B—C5—H5A109.5
C4—N2—C6128.32 (13)C4—C5—H5C109.5
N1—N2—C6120.56 (12)H5B—C5—H5C109.5
C7—N3—Zn1115.47 (10)H5A—C5—H5C109.5
C7—N3—H3A108.4N2—C6—C7112.70 (13)
Zn1—N3—H3A108.4N2—C6—H6B109.1
C7—N3—H3B108.4C7—C6—H6B109.1
Zn1—N3—H3B108.4N2—C6—H6A109.1
H3A—N3—H3B107.5C7—C6—H6A109.1
C2—C1—H1A109.5H6B—C6—H6A107.8
C2—C1—H1C109.5N3—C7—C6111.80 (13)
H1A—C1—H1C109.5N3—C7—H7B109.3
C2—C1—H1B109.5C6—C7—H7B109.3
H1A—C1—H1B109.5N3—C7—H7A109.3
H1C—C1—H1B109.5C6—C7—H7A109.3
N1—C2—C3109.84 (14)H7B—C7—H7A107.9
N1—C2—C1121.18 (14)
N3—Zn1—N1—C2151.81 (14)N2—N1—C2—C1179.17 (14)
Cl1—Zn1—N1—C231.54 (15)Zn1—N1—C2—C15.9 (2)
Cl2—Zn1—N1—C296.31 (14)N1—C2—C3—C40.41 (18)
N3—Zn1—N1—N222.52 (12)C1—C2—C3—C4179.06 (16)
Cl1—Zn1—N1—N2142.79 (10)N1—N2—C4—C30.02 (18)
Cl2—Zn1—N1—N289.35 (11)C6—N2—C4—C3178.15 (15)
C2—N1—N2—C40.23 (17)N1—N2—C4—C5179.25 (14)
Zn1—N1—N2—C4175.91 (10)C6—N2—C4—C51.1 (3)
C2—N1—N2—C6178.07 (13)C2—C3—C4—N20.25 (18)
Zn1—N1—N2—C62.38 (18)C2—C3—C4—C5178.94 (17)
N1—Zn1—N3—C70.89 (11)C4—N2—C6—C7122.45 (17)
Cl1—Zn1—N3—C7120.69 (10)N1—N2—C6—C755.52 (19)
Cl2—Zn1—N3—C7116.93 (10)Zn1—N3—C7—C642.60 (16)
N2—N1—C2—C30.39 (17)N2—C6—C7—N378.30 (17)
Zn1—N1—C2—C3175.34 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.922.413.3073 (15)165
N3—H3B···Cl1ii0.922.433.2620 (15)150
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C7H13N3)]
Mr275.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.060 (3), 8.894 (2), 14.260 (4)
β (°) 97.95 (3)
V3)1138.1 (6)
Z4
Radiation typeCu Kα
µ (mm1)7.00
Crystal size (mm)0.48 × 0.28 × 0.21
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.134, 0.321
No. of measured, independent and
observed [I > 2σ(I)] reflections
16711, 2123, 2053
Rint0.019
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.03
No. of reflections2123
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), FCF_filter (Guzei, 2007) and INSerter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
Zn1—N12.0214 (13)Zn1—Cl12.2266 (6)
Zn1—N32.0461 (14)Zn1—Cl22.2512 (6)
N1—Zn1—N396.88 (6)N1—Zn1—Cl2114.15 (4)
N1—Zn1—Cl1113.62 (4)N3—Zn1—Cl2106.77 (4)
N3—Zn1—Cl1114.24 (4)Cl1—Zn1—Cl2110.44 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl2i0.922.413.3073 (15)165.4
N3—H3B···Cl1ii0.922.433.2620 (15)149.6
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support for this work from the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT-Plus. Bruker-AXS Inc., Madison, WI, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBu, X. R., Jackson, C. R., Van Derveer, D., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991–3001.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358–1367.  CrossRef CAS Web of Science Google Scholar
First citationCzaun, M., Nelana, S. M., Guzei, I. A., Hasselgren, C., Håkensson, M., Jagner, S., Lisensky, G., Darkwa, J. & Nordlander, E. (2010). Inorg. Chim. Acta, 363, 3102–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C., Ainooson, M. K. & Darkwa, J. (2010). Acta Cryst. C66, m89–m96.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoner, R. R. & Ray, M. (2008). Inorg. Chem. 47, 9122–9124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, M., Ray, M., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1627-m1628
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds