organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,6-Di­methyl­pyrimidin-2-yl)-1,3-benzo­thia­zol-2-amine

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M15 6BH, England, bSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, cDepartment of Chemistry, Faculty of Science, Sohag University, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C13H12N4S, an amino N atom is connected to a 1,3-benzothia­zole fused-ring system and a dimethyl-substituted pyrimidine ring, these components being aligned [inter­planar dihedral angle = 1.9 (1)°]. The secondary amino N atom forms an inter­molecular N—H⋯N hydrogen bond to an N atom of the fused ring of an adjacent mol­ecule, generating a centrosymmetric cyclic hydrogen-bonded dimer [graph set R22(8)].

Related literature

For the structure of N-(4,6-dimethyl­pyrimidin-2-yl)-1H-benzimidazol-2-amine, see: Mohamed et al. (2011[Mohamed, S. K., El-Remaily, M. A. A., Gurbanov, A. V., Khalilov, A. N. & Ng, S. W. (2011). Acta Cryst. E67, o719.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4S

  • Mr = 256.34

  • Monoclinic, P 21 /n

  • a = 6.7608 (2) Å

  • b = 8.5154 (2) Å

  • c = 20.6503 (9) Å

  • β = 97.237 (2)°

  • V = 1179.39 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 K

  • 0.24 × 0.14 × 0.08 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.980

  • 11943 measured reflections

  • 2704 independent reflections

  • 2100 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.02

  • 2704 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.89 (3) 2.27 (3) 3.142 (2) 168 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, O. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an earlier study, we reported the structure of N-(4,6-dimethylpyrimidin-2-yl)-1H-benzimidazol-2-amine (Mohamed et al., 2011). The benzimidazole portion of that molecule was replaced by a benzothiazole unit in the present study, giving the title compound C13H12N4S (Scheme I). In this molecule, an amino N atom is connected to a benzothiazole fused-ring system and a dimethyl-substituted pyrimidine ring, these being aligned [inter-ring dihedral angle, 1.9 (1)°] (Fig. 1). The amino N atom forms an intermolecular N—H···N hydrogen bond to the N atom of the fused-ring of an adjacent molecule (Table 1) to generate a centrosymmetric cyclic hydrogen-bonded dimer [graph set R</i<>22(8) (Etter et al., 1990)].

Related literature top

For the structure of N-(4,6-dimethylpyrimidin-2-yl)-1H-benzimidazol-2-amine, see: Mohamed et al. (2011). For graph-set analysis, see: Etter et al. (1990).

Experimental top

2-(1,3-Benzothiazol-2-yl)guanidine (0.05 mol) was heated in acetylacetone solution (0.10 mol, approx. 10 ml) in the presence of a few drops of acetic acid at 473 K for 1 h. The mixture was cooled and the product was collected and recrystalized from ethanol to give the title compound (m.p. 513 K) in 85% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H, 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C). The amino H-atom was located in a difference Fourier map, and was freely refined. The reflections (-1 2 3) and (0 1 2) were omitted because to bad agreement.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H12N4S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
N-(4,6-Dimethylpyrimidin-2-yl)-1,3-benzothiazol-2-amine top
Crystal data top
C13H12N4SF(000) = 536
Mr = 256.34Dx = 1.444 Mg m3
Monoclinic, P21/nMelting point: 513 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.7608 (2) ÅCell parameters from 2630 reflections
b = 8.5154 (2) Åθ = 2.9–27.5°
c = 20.6503 (9) ŵ = 0.26 mm1
β = 97.237 (2)°T = 120 K
V = 1179.39 (7) Å3Block, colorless
Z = 40.24 × 0.14 × 0.08 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2704 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1110
Tmin = 0.940, Tmax = 0.980l = 2526
11943 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.7927P]
where P = (Fo2 + 2Fc2)/3
2704 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C13H12N4SV = 1179.39 (7) Å3
Mr = 256.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7608 (2) ŵ = 0.26 mm1
b = 8.5154 (2) ÅT = 120 K
c = 20.6503 (9) Å0.24 × 0.14 × 0.08 mm
β = 97.237 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2704 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2100 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.980Rint = 0.061
11943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
2704 reflectionsΔρmin = 0.46 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47670 (7)0.76071 (6)0.65817 (3)0.01754 (17)
N10.6118 (2)0.55355 (17)0.58054 (8)0.0158 (4)
N20.2981 (2)0.64918 (19)0.53944 (9)0.0170 (4)
H20.305 (4)0.586 (3)0.5054 (13)0.034 (7)*
N30.0130 (2)0.71820 (18)0.48927 (8)0.0165 (4)
N40.1226 (2)0.83658 (18)0.59065 (8)0.0167 (4)
C10.7100 (3)0.6766 (2)0.68212 (10)0.0167 (4)
C20.8414 (3)0.7057 (2)0.73865 (10)0.0203 (5)
H2A0.80970.77960.77020.024*
C31.0194 (3)0.6232 (2)0.74717 (10)0.0226 (5)
H31.11080.64020.78540.027*
C41.0668 (3)0.5154 (2)0.70042 (10)0.0215 (5)
H41.18980.46020.70750.026*
C50.9374 (3)0.4875 (2)0.64396 (10)0.0184 (4)
H50.97080.41470.61220.022*
C60.7561 (3)0.5692 (2)0.63488 (10)0.0160 (4)
C70.4608 (3)0.6453 (2)0.58687 (10)0.0152 (4)
C80.1274 (3)0.7392 (2)0.54049 (10)0.0150 (4)
C90.3381 (3)0.7869 (2)0.43244 (11)0.0201 (4)
H9A0.29450.71050.40170.030*
H9B0.36270.88840.41050.030*
H9C0.46110.74970.44790.030*
C100.1786 (3)0.8053 (2)0.48952 (10)0.0168 (4)
C110.2001 (3)0.9088 (2)0.54009 (10)0.0181 (4)
H110.31800.96940.54000.022*
C120.0455 (3)0.9217 (2)0.59088 (10)0.0168 (4)
C130.0551 (3)1.0316 (2)0.64689 (11)0.0217 (5)
H13A0.03260.99340.68510.032*
H13B0.19241.03710.65730.032*
H13C0.01171.13640.63510.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0175 (3)0.0186 (3)0.0166 (3)0.00010 (19)0.0027 (2)0.00291 (19)
N10.0172 (8)0.0131 (8)0.0166 (9)0.0006 (6)0.0008 (7)0.0007 (6)
N20.0170 (9)0.0173 (8)0.0163 (9)0.0018 (7)0.0008 (7)0.0029 (7)
N30.0158 (8)0.0159 (8)0.0181 (9)0.0013 (6)0.0033 (7)0.0016 (7)
N40.0183 (8)0.0145 (8)0.0181 (9)0.0003 (6)0.0051 (7)0.0009 (7)
C10.0189 (10)0.0165 (9)0.0153 (10)0.0022 (8)0.0040 (8)0.0017 (8)
C20.0241 (11)0.0222 (10)0.0152 (11)0.0031 (8)0.0048 (9)0.0002 (8)
C30.0240 (11)0.0272 (11)0.0153 (11)0.0037 (9)0.0021 (9)0.0023 (8)
C40.0188 (10)0.0229 (10)0.0221 (12)0.0016 (8)0.0002 (9)0.0044 (9)
C50.0212 (10)0.0164 (9)0.0180 (11)0.0012 (8)0.0038 (8)0.0005 (8)
C60.0179 (10)0.0145 (9)0.0153 (10)0.0035 (7)0.0011 (8)0.0022 (8)
C70.0168 (10)0.0131 (9)0.0160 (10)0.0025 (7)0.0027 (8)0.0001 (7)
C80.0160 (9)0.0129 (9)0.0167 (11)0.0014 (7)0.0047 (8)0.0014 (7)
C90.0189 (10)0.0208 (10)0.0203 (11)0.0001 (8)0.0013 (9)0.0012 (8)
C100.0175 (9)0.0133 (9)0.0201 (11)0.0017 (7)0.0044 (8)0.0042 (8)
C110.0164 (10)0.0166 (9)0.0222 (11)0.0021 (8)0.0060 (8)0.0039 (8)
C120.0199 (10)0.0131 (9)0.0184 (11)0.0033 (7)0.0065 (8)0.0028 (8)
C130.0233 (11)0.0188 (10)0.0238 (12)0.0001 (8)0.0068 (9)0.0030 (8)
Geometric parameters (Å, º) top
S1—C11.746 (2)C3—H30.9500
S1—C71.762 (2)C4—C51.387 (3)
N1—C71.305 (2)C4—H40.9500
N1—C61.397 (2)C5—C61.401 (3)
N2—C71.378 (2)C5—H50.9500
N2—C81.388 (2)C9—C101.502 (3)
N2—H20.89 (3)C9—H9A0.9800
N3—C81.342 (3)C9—H9B0.9800
N3—C101.343 (2)C9—H9C0.9800
N4—C81.330 (3)C10—C111.388 (3)
N4—C121.349 (3)C11—C121.389 (3)
C1—C61.400 (3)C11—H110.9500
C1—C21.397 (3)C12—C131.496 (3)
C2—C31.385 (3)C13—H13A0.9800
C2—H2A0.9500C13—H13B0.9800
C3—C41.399 (3)C13—H13C0.9800
C1—S1—C788.04 (9)N1—C7—S1116.81 (14)
C7—N1—C6109.77 (16)N2—C7—S1122.68 (15)
C7—N2—C8126.35 (18)N4—C8—N3127.80 (18)
C7—N2—H2115.6 (16)N4—C8—N2117.28 (17)
C8—N2—H2118.1 (16)N3—C8—N2114.91 (17)
C8—N3—C10115.50 (17)C10—C9—H9A109.5
C8—N4—C12116.16 (17)C10—C9—H9B109.5
C6—C1—C2121.59 (18)H9A—C9—H9B109.5
C6—C1—S1110.06 (15)C10—C9—H9C109.5
C2—C1—S1128.35 (16)H9A—C9—H9C109.5
C3—C2—C1117.85 (19)H9B—C9—H9C109.5
C3—C2—H2A121.1N3—C10—C11121.32 (18)
C1—C2—H2A121.1N3—C10—C9117.08 (18)
C2—C3—C4121.07 (19)C11—C10—C9121.60 (18)
C2—C3—H3119.5C10—C11—C12118.60 (18)
C4—C3—H3119.5C10—C11—H11120.7
C5—C4—C3121.16 (19)C12—C11—H11120.7
C5—C4—H4119.4N4—C12—C11120.60 (18)
C3—C4—H4119.4N4—C12—C13117.25 (18)
C4—C5—C6118.41 (19)C11—C12—C13122.14 (18)
C4—C5—H5120.8C12—C13—H13A109.5
C6—C5—H5120.8C12—C13—H13B109.5
C1—C6—N1115.32 (17)H13A—C13—H13B109.5
C1—C6—C5119.92 (18)C12—C13—H13C109.5
N1—C6—C5124.76 (18)H13A—C13—H13C109.5
N1—C7—N2120.51 (18)H13B—C13—H13C109.5
C7—S1—C1—C60.08 (15)C8—N2—C7—S10.8 (3)
C7—S1—C1—C2179.4 (2)C1—S1—C7—N10.22 (16)
C6—C1—C2—C30.8 (3)C1—S1—C7—N2179.59 (17)
S1—C1—C2—C3179.75 (16)C12—N4—C8—N31.7 (3)
C1—C2—C3—C40.6 (3)C12—N4—C8—N2179.41 (16)
C2—C3—C4—C50.1 (3)C10—N3—C8—N40.8 (3)
C3—C4—C5—C60.5 (3)C10—N3—C8—N2179.65 (16)
C2—C1—C6—N1179.22 (17)C7—N2—C8—N43.1 (3)
S1—C1—C6—N10.3 (2)C7—N2—C8—N3177.90 (17)
C2—C1—C6—C50.4 (3)C8—N3—C10—C110.4 (3)
S1—C1—C6—C5179.93 (15)C8—N3—C10—C9179.09 (17)
C7—N1—C6—C10.5 (2)N3—C10—C11—C120.4 (3)
C7—N1—C6—C5179.94 (18)C9—C10—C11—C12179.04 (18)
C4—C5—C6—C10.3 (3)C8—N4—C12—C111.6 (3)
C4—C5—C6—N1179.82 (18)C8—N4—C12—C13179.75 (17)
C6—N1—C7—N2179.37 (17)C10—C11—C12—N40.6 (3)
C6—N1—C7—S10.4 (2)C10—C11—C12—C13179.24 (18)
C8—N2—C7—N1179.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.89 (3)2.27 (3)3.142 (2)168 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H12N4S
Mr256.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.7608 (2), 8.5154 (2), 20.6503 (9)
β (°) 97.237 (2)
V3)1179.39 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11943, 2704, 2100
Rint0.061
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections2704
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.46

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.89 (3)2.27 (3)3.142 (2)168 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The use of the EPSRC X-ray crystallographic facilities at the University of Southampton, England, is gratefully acknowledged. We thank Manchester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMohamed, S. K., El-Remaily, M. A. A., Gurbanov, A. V., Khalilov, A. N. & Ng, S. W. (2011). Acta Cryst. E67, o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, O. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds