supplementary materials


aa2030 scheme

Acta Cryst. (2012). E68, o53    [ doi:10.1107/S1600536811051968 ]

2-(4H-1,2,4-Triazol-4-yl)pyrimidine

Q. Wang, S. Wang, Y. Y. Wang and Y. Wang

Abstract top

The title compound, C6H5N5, is almost planar, the triazole and pyrimidine rings forming a dihedral angle of 2.9 (13)°.

Comment top

Many molecular compounds exhibit interesting magnetic and luminescent properties (Haasnoot, 2000). One of the requirements for posessing such macroscopic properties is to create interactions between the molecular units and the active sites within the crystal lattices. 1,2,4-Triazole and its derivatives are interesting bridging ligands. In the title compound the triazole and the pyrimidine rings are almost in the same plane, the dihedral angles between them is 2.9 (13)°.

Related literature top

For the synthesis of the title compound, see: Wiley & Hart (1953). For properties of related compounds, see: Haasnoot (2000).

Experimental top

A mixture of 1.2 g (0.012 mol) of pyrimidin-2-amine and 2.0 g (0.011 mol) of diformylhydrazine was heated slowly to 160–170 °C for 30 min. The crystals, which separated on cooling, were collected and recrystallized from water and acetonitrile and dried on air. Yield 0.7 g (43%). Anal. Calc. for C6H5N5 (%): C, 50.52; H, 5.30; N 44.18. Found (%): C, 50.59; H, 5.36; N 44.23.

Refinement top

Hydrogen atoms were included into calculated positions and refined as riding on the C atoms with C—H = 0.93 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). Friedel pairs were averaged for the data used on the final cycles of the refinement.

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 view of the title compound with the displacement ellipsoids shown on 30% probability level.
2-(4H-1,2,4-Triazol-4-yl)pyrimidine top
Crystal data top
C6H5N5Z = 2
Mr = 147.15F(000) = 152
Triclinic, P1Dx = 1.490 Mg m3
Dm = 1.490 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6929 (10) ÅCell parameters from 786 reflections
b = 7.7355 (14) Åθ = 2.6–25.9°
c = 8.6102 (15) ŵ = 0.10 mm1
α = 67.233 (2)°T = 293 K
β = 80.755 (2)°Sheet, colourless
γ = 69.837 (2)°0.46 × 0.34 × 0.12 mm
V = 328.04 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1154 independent reflections
Radiation source: fine-focus sealed tube916 reflections with I > 2σ(I)
graphiteRint = 0.010
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.954, Tmax = 0.988k = 96
1803 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.0336P]
where P = (Fo2 + 2Fc2)/3
1154 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H5N5γ = 69.837 (2)°
Mr = 147.15V = 328.04 (10) Å3
Triclinic, P1Z = 2
a = 5.6929 (10) ÅMo Kα radiation
b = 7.7355 (14) ŵ = 0.10 mm1
c = 8.6102 (15) ÅT = 293 K
α = 67.233 (2)°0.46 × 0.34 × 0.12 mm
β = 80.755 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1154 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
916 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.010
1803 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.11 e Å3
S = 1.03Δρmin = 0.17 e Å3
1154 reflectionsAbsolute structure: ?
100 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5226 (2)0.81660 (19)0.85375 (15)0.0447 (4)
N20.2458 (2)0.66148 (18)0.82287 (15)0.0450 (4)
N30.20693 (19)0.75348 (16)1.05328 (14)0.0371 (3)
N40.0968 (3)0.8138 (2)1.28772 (16)0.0564 (4)
N50.0695 (2)0.7314 (2)1.26282 (16)0.0543 (4)
C10.3340 (2)0.74312 (19)0.89977 (17)0.0349 (3)
C20.3638 (3)0.6558 (2)0.6765 (2)0.0526 (4)
H20.30950.60090.61570.063*
C30.5620 (3)0.7281 (2)0.61289 (19)0.0525 (4)
H30.64220.72360.51090.063*
C40.6357 (3)0.8070 (2)0.7069 (2)0.0511 (4)
H40.77020.85620.66710.061*
C50.2575 (3)0.8247 (2)1.16196 (19)0.0483 (4)
H50.38980.87461.14780.058*
C60.0005 (3)0.6975 (2)1.12413 (19)0.0464 (4)
H60.07950.64221.07870.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0397 (6)0.0550 (8)0.0439 (7)0.0210 (6)0.0051 (5)0.0192 (6)
N20.0507 (7)0.0556 (8)0.0394 (7)0.0242 (6)0.0061 (5)0.0245 (6)
N30.0385 (6)0.0415 (7)0.0347 (7)0.0148 (5)0.0037 (5)0.0172 (5)
N40.0665 (9)0.0667 (9)0.0457 (8)0.0241 (7)0.0086 (6)0.0314 (7)
N50.0534 (8)0.0674 (10)0.0471 (8)0.0232 (7)0.0136 (6)0.0278 (7)
C10.0347 (7)0.0347 (8)0.0336 (7)0.0089 (6)0.0000 (5)0.0126 (6)
C20.0641 (10)0.0598 (10)0.0415 (9)0.0213 (8)0.0045 (7)0.0266 (8)
C30.0561 (10)0.0581 (10)0.0371 (9)0.0134 (8)0.0107 (7)0.0190 (8)
C40.0415 (8)0.0609 (10)0.0456 (9)0.0190 (8)0.0097 (7)0.0151 (8)
C50.0556 (9)0.0580 (10)0.0448 (9)0.0256 (8)0.0040 (7)0.0278 (8)
C60.0430 (8)0.0593 (10)0.0449 (9)0.0233 (7)0.0090 (6)0.0245 (7)
Geometric parameters (Å, °) top
N1—C11.3199 (18)N5—C61.2927 (19)
N1—C41.3407 (19)C2—C31.373 (2)
N2—C11.3185 (18)C2—H20.9300
N2—C21.3386 (18)C3—C41.368 (2)
N3—C61.3624 (18)C3—H30.9300
N3—C51.3629 (18)C4—H40.9300
N3—C11.4184 (17)C5—H50.9300
N4—C51.2965 (19)C6—H60.9300
N4—N51.3915 (19)
C1—N1—C4114.10 (13)C4—C3—C2116.74 (14)
C1—N2—C2114.64 (13)C4—C3—H3121.6
C6—N3—C5103.94 (12)C2—C3—H3121.6
C6—N3—C1127.43 (12)N1—C4—C3122.95 (14)
C5—N3—C1128.61 (12)N1—C4—H4118.5
C5—N4—N5106.86 (12)C3—C4—H4118.5
C6—N5—N4107.05 (12)N4—C5—N3111.03 (13)
N2—C1—N1129.15 (13)N4—C5—H5124.5
N2—C1—N3115.06 (12)N3—C5—H5124.5
N1—C1—N3115.79 (12)N5—C6—N3111.12 (13)
N2—C2—C3122.41 (14)N5—C6—H6124.4
N2—C2—H2118.8N3—C6—H6124.4
C3—C2—H2118.8
C5—N4—N5—C60.04 (17)N2—C2—C3—C40.2 (2)
C2—N2—C1—N11.0 (2)C1—N1—C4—C30.0 (2)
C2—N2—C1—N3178.77 (12)C2—C3—C4—N10.4 (2)
C4—N1—C1—N20.8 (2)N5—N4—C5—N30.04 (18)
C4—N1—C1—N3179.02 (12)C6—N3—C5—N40.10 (17)
C6—N3—C1—N23.3 (2)C1—N3—C5—N4178.59 (13)
C5—N3—C1—N2178.33 (13)N4—N5—C6—N30.11 (17)
C6—N3—C1—N1176.55 (13)C5—N3—C6—N50.13 (17)
C5—N3—C1—N11.8 (2)C1—N3—C6—N5178.59 (13)
C1—N2—C2—C30.5 (2)
Acknowledgements top

This work was supported financially by Tianjin Normal University (grant No. 5RL090), the Natural Science Foundation of Tianjin (grant No. 11JCYBJC03600) and the Young Scientist Fund (grant No. 52 G10005).

references
References top

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Haasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131-185.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368–1371.