supplementary materials


bq2327 scheme

Acta Cryst. (2012). E68, o153    [ doi:10.1107/S1600536811053669 ]

4-(Furan-2-ylmethoxy)benzene-1,2-dicarbonitrile

H. Tuncer, A. O. Görgülü and T. Hökelek

Abstract top

In the title compound, C13H8N2O2, prepared from furfuryl alcohol and 4-nitrophthalonitrile in the presence of potassium carbonate in dimethylformamide, the furan and benzene rings are oriented at a dihedral angle of 53.45 (9)°. In the crystal, weak C-H...O and C-H...N hydrogen bonds link the molecules into a three-dimensional network.

Comment top

Phthalonitriles are used for preparing symmetrically and unsymmetrically substituted phthalocyanine complexes (Leznoff & Lever, 1996). Phthalocyanines have currently been the topic of research because of their wide application fields, such as thin film fabrication, organic pigments, chemical sensors, electrochromic display devices, molecular epitaxic deposition and composites, liquid crystals, photovoltaic cells self-assembled materials. The fundamental optical and electronic properties of these materials are explained and their potential in non-linear optics, optical data storage, electronic sensors, xerography, solar energy conversion, nuclear chemistry, molecular magnetism, electrochromic displays and heterogeneous catalysis is evaluated by McKeown (1998). The title compound was synthesized and its crystal structure is reported herein.

In the title compound, (Fig. 1), the bond lengths are close to standard values (Allen et al., 1987). The furan [A (O2/C1—C4)] and the benzene [B (C6—C11)] rings are oriented at a dihedral angle of 53.45 (9)°. Atoms O1 and C5 are 1.094 (2) and -0.089 (3) Å away from the plane of ring A, while atoms O1, N1, N2, C5, C12 and C13 are -0.023 (2), -0.007 (3), 0.075 (3), 0.193 (3), 0.029 (3) and -0.003 (3) Å away from the plane of ring B, respectively. So, they are almost co-planar with the adjacent benzene ring.

In the crystal, weak intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) link the molecules into a three-dimensional network (Fig. 2).

Related literature top

For the use of phthalonitriles in the preparation of symmetrically and unsymmetrically substituted phthalocyanine complexes, see: Leznoff & Lever (1996). For the fundamental optical and electronic properties of phthalocyanines and their applications, see: McKeown (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, furfuryl alcohol (1.49 g, 15.2 mmol) and 4-nitrophthalonitrile (2.64 g, 15.2 mmol) were heated at 358 K in dry DMF (15 ml) with stirring under argon atmosphere. Then, dry fine powdered potassium carbonate (6.00 g, 43.47 mmol) was added in portions (14 × 3.1 mmol) every 10 min. The mixture was heated for a further 24 h. After cooling, the mixture was added into ice-water (200 g). The product was filtered off and washed with NaOH solution (10%) and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield: 1.25 g, 55.85%). Single crystals suitable for X-ray diffraction mesurement was obtained by slow evaporation of the solution in ethanol (m.p. 385-387 K).

Refinement top

The C-bound H-atoms were positioned geometrically with C—H = 0.95 Å and 0.99 Å, for aromatic and methylene H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
4-(Furan-2-ylmethoxy)benzene-1,2-dicarbonitrile top
Crystal data top
C13H8N2O2F(000) = 464
Mr = 224.21Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1088 reflections
a = 3.9681 (2) Åθ = 3.0–23.3°
b = 14.3029 (3) ŵ = 0.10 mm1
c = 19.2100 (5) ÅT = 100 K
V = 1090.27 (7) Å3Rod-shaped, colorless
Z = 40.15 × 0.08 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2615 independent reflections
Radiation source: fine-focus sealed tube1709 reflections with I > 2σ(I)
graphiteRint = 0.047
φ and ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 45
Tmin = 0.986, Tmax = 0.994k = 1818
6208 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H8N2O2V = 1090.27 (7) Å3
Mr = 224.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9681 (2) ŵ = 0.10 mm1
b = 14.3029 (3) ÅT = 100 K
c = 19.2100 (5) Å0.15 × 0.08 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1709 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.994Rint = 0.047
6208 measured reflectionsθmax = 28.2°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.23 e Å3
2615 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0385 (5)0.13224 (11)0.56836 (9)0.0273 (5)
O20.0884 (5)0.01570 (12)0.46812 (10)0.0298 (5)
N10.3842 (7)0.51178 (17)0.75462 (12)0.0422 (7)
N20.6574 (7)0.26606 (17)0.82143 (14)0.0400 (7)
C10.0302 (8)0.09143 (17)0.43144 (15)0.0309 (7)
H10.00590.10160.38310.037*
C20.2035 (8)0.14879 (19)0.47319 (15)0.0311 (7)
H20.31070.20560.46020.037*
C30.1961 (8)0.10832 (18)0.54078 (15)0.0303 (7)
H30.29760.13280.58170.036*
C40.0165 (7)0.02822 (17)0.53552 (14)0.0236 (6)
C50.0991 (8)0.04146 (16)0.58672 (14)0.0269 (6)
H5A0.02270.02350.63390.032*
H5B0.34830.04430.58680.032*
C60.0587 (7)0.20592 (17)0.60840 (14)0.0230 (6)
C70.2357 (7)0.19683 (18)0.67054 (14)0.0236 (6)
H70.29950.13690.68730.028*
C80.3172 (7)0.27691 (18)0.70750 (14)0.0234 (6)
C90.2258 (7)0.36548 (18)0.68341 (13)0.0239 (6)
C100.0516 (7)0.37317 (18)0.62082 (13)0.0264 (6)
H100.01070.43310.60370.032*
C110.0306 (7)0.29413 (17)0.58357 (14)0.0262 (6)
H110.14870.29970.54080.031*
C120.5042 (8)0.26926 (18)0.77133 (15)0.0272 (7)
C130.3132 (8)0.4472 (2)0.72251 (15)0.0303 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (11)0.0226 (9)0.0264 (10)0.0029 (9)0.0048 (9)0.0034 (8)
O20.0384 (12)0.0241 (9)0.0268 (10)0.0047 (9)0.0026 (10)0.0003 (8)
N10.0552 (19)0.0336 (13)0.0378 (16)0.0074 (14)0.0024 (14)0.0029 (13)
N20.0422 (16)0.0472 (16)0.0304 (16)0.0012 (13)0.0040 (14)0.0020 (13)
C10.0389 (18)0.0255 (14)0.0282 (16)0.0005 (14)0.0043 (15)0.0053 (12)
C20.0318 (17)0.0240 (14)0.0374 (18)0.0012 (13)0.0028 (14)0.0039 (13)
C30.0314 (16)0.0274 (14)0.0321 (17)0.0040 (13)0.0049 (14)0.0055 (13)
C40.0241 (14)0.0261 (13)0.0206 (14)0.0008 (13)0.0029 (12)0.0018 (11)
C50.0299 (16)0.0225 (13)0.0282 (15)0.0041 (12)0.0014 (13)0.0017 (12)
C60.0220 (14)0.0243 (13)0.0228 (14)0.0008 (12)0.0024 (11)0.0032 (11)
C70.0236 (14)0.0241 (13)0.0231 (15)0.0008 (12)0.0011 (12)0.0041 (11)
C80.0221 (14)0.0289 (15)0.0194 (14)0.0014 (12)0.0015 (12)0.0010 (12)
C90.0258 (15)0.0245 (13)0.0216 (15)0.0023 (12)0.0041 (12)0.0023 (12)
C100.0276 (16)0.0250 (13)0.0267 (15)0.0026 (13)0.0019 (13)0.0030 (12)
C110.0227 (14)0.0323 (14)0.0237 (14)0.0011 (13)0.0015 (13)0.0028 (12)
C120.0299 (16)0.0277 (15)0.0239 (16)0.0015 (13)0.0016 (14)0.0007 (12)
C130.0358 (17)0.0275 (15)0.0277 (17)0.0004 (14)0.0001 (14)0.0002 (13)
Geometric parameters (Å, °) top
O1—C51.452 (3)C5—H5A0.9900
O1—C61.360 (3)C5—H5B0.9900
O2—C11.375 (3)C6—C71.391 (4)
O2—C41.372 (3)C7—H70.9500
N1—C131.146 (3)C8—C71.386 (4)
N2—C121.139 (4)C8—C121.437 (4)
C1—H10.9500C9—C81.397 (4)
C2—C11.338 (4)C9—C101.391 (4)
C2—H20.9500C10—C111.377 (3)
C3—C21.422 (4)C10—H100.9500
C3—H30.9500C11—C61.395 (3)
C4—C31.353 (4)C11—H110.9500
C5—C41.473 (4)C13—C91.432 (4)
C6—O1—C5116.7 (2)O1—C6—C7123.8 (2)
C4—O2—C1106.1 (2)O1—C6—C11115.8 (2)
O2—C1—H1124.7C7—C6—C11120.4 (2)
C2—C1—O2110.6 (2)C6—C7—H7120.6
C2—C1—H1124.7C8—C7—C6118.7 (2)
C1—C2—C3106.7 (2)C8—C7—H7120.6
C1—C2—H2126.7C7—C8—C9121.3 (2)
C3—C2—H2126.7C7—C8—C12119.6 (2)
C2—C3—H3126.6C9—C8—C12119.1 (2)
C4—C3—C2106.7 (3)C8—C9—C13120.2 (2)
C4—C3—H3126.6C10—C9—C8119.1 (2)
O2—C4—C5116.6 (2)C10—C9—C13120.6 (2)
C3—C4—O2109.9 (2)C9—C10—H10119.9
C3—C4—C5133.4 (2)C11—C10—C9120.1 (2)
O1—C5—C4109.0 (2)C11—C10—H10119.9
O1—C5—H5A109.9C6—C11—H11119.8
O1—C5—H5B109.9C10—C11—C6120.3 (2)
C4—C5—H5A109.9C10—C11—H11119.8
C4—C5—H5B109.9N2—C12—C8177.7 (3)
H5A—C5—H5B108.3N1—C13—C9179.0 (3)
C8—C9—C10—C110.4 (4)C5—C4—C3—C2175.4 (3)
C13—C9—C10—C11179.9 (3)C4—C3—C2—C10.1 (3)
C9—C10—C11—C60.3 (4)C3—C2—C1—O20.2 (3)
C5—O1—C6—C710.1 (4)C4—O2—C1—C20.4 (3)
C5—O1—C6—C11170.0 (2)C10—C9—C8—C70.5 (4)
C10—C11—C6—O1179.0 (3)C13—C9—C8—C7179.9 (3)
C10—C11—C6—C70.9 (4)C10—C9—C8—C12178.5 (3)
C6—O1—C5—C4176.6 (2)C13—C9—C8—C121.0 (4)
C1—O2—C4—C30.4 (3)C9—C8—C7—C60.2 (4)
C1—O2—C4—C5176.1 (2)C12—C8—C7—C6179.1 (2)
O1—C5—C4—C3121.0 (3)O1—C6—C7—C8179.1 (3)
O1—C5—C4—O263.5 (3)C11—C6—C7—C80.8 (4)
O2—C4—C3—C20.3 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.453.369 (4)162
C10—H10···O2ii0.952.423.233 (3)144
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, −y+1/2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.453.369 (4)162
C10—H10···O2ii0.952.423.233 (3)144
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, −y+1/2, −z+1.
Acknowledgements top

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Leznoff, C. C. & Lever, A. B. P. (1996). Editors. Phthalocyanines: Properties and Applications, Vols. 1-4. Weinheim: VHC.

McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.