supplementary materials


bq2328 scheme

Acta Cryst. (2012). E68, m88    [ doi:10.1107/S1600536811054596 ]

Bis([mu]-pyridinium-2-carboxylato-[kappa]2O:O')bis[triaqua(sulfato-[kappa]O)manganese(II)]

H. A. Rasekh and B. Bahrami

Abstract top

The asymmetric unit of the title compound, [Mn2(SO4)2(C6H5NO2)2(H2O)6], comprises half of a centrosymmetric dimer. The MnII atom is coordinated by two O atoms of the monodentate carboxylate ligand, an O atom of the sulfate anion in axial position and three water molecules in a distorted octahedral geometry. In the crystal, molecules are connected through N-H...O and O-H...O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by intermolecular [pi]-[pi] interactions [centroid-centroid distance = 3.842 (2) Å].

Comment top

As a part of a synthetic work on synthesis and characterization and applications (Lee et al., 2004; Mautner et al., 1997), of new Mn(II) complexes with aromatic carboxylic acid, we determined the X-ray structure of the title compound.

The molecule structure of the title compound (Fig. 1) is composed of a centerosymmetric dimer of a Mn(II) complex with pyridine-2-carboxylic acid. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry around the MnII is a distorted octahedron which is coordinated by two oxygen atoms of the carboxylic ligand, an oxygen atom of the sulfate anion, and three oxygen atoms of the coordinated water molecules. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1), link neighboring molecules, forming three dimensional network (Fig. 2). The crystal structure is further stabilized by the intermolecular π-π interaction [Cg1···Cg1i = 3.842 (2) Å, (i) 3/2 - x, -1/2 + y, z; Cg1 is the centroid of the (N1/C1–C5) ring.

Related literature top

For standard bond lengths, see: Allen et al., (1987). For background to the applications of MnII complexes, see: Lee et al. (2004); Mautner et al. (1997).

Experimental top

The title compound was synthesized by adding 10 ml solution of pyridine-2-carboxylic acid (1.456 g, 11.832 mmol) to a 10 ml solution of manganese sulfate (2g, 11.832 mmol). The mixture was stirred for 24 h. Light-brown single crystals of the title compound suitable for X-ray structure determination were obtained by slow evaporation of the solvents at room temperature after 4 days.

Refinement top

All hydrogen atoms of C were positioned geometrically with C—H = 0.93 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq(C). The N-bound H atom was located in a difference Fourier map and constrained to refine with the parent atom by Uiso (H) = 1.2 Ueq(N). The hydrogen atoms of the water molecules were located in a difference Fourier map and constrained to refine with the parent atoms by Uiso (H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 40% probability displacement ellipsoids. Symmetry code for the unlabeled atoms: -x + 2, -y + 1, -z + 1
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the b-axis showing three dimensional networks. The dashed lines show the intermolecular interactions.
Bis(µ-pyridinium-2-carboxylato-κ2O:O')bis[triaqua(sulfato- κO)manganese(II)] top
Crystal data top
[Mn2(SO4)2(C6H5NO2)2(H2O)6]F(000) = 1336
Mr = 656.32Dx = 1.879 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2525 reflections
a = 16.886 (3) Åθ = 2.5–27.4°
b = 7.6022 (15) ŵ = 1.36 mm1
c = 18.070 (4) ÅT = 291 K
V = 2319.6 (8) Å3Block, light-brown
Z = 40.28 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1945 independent reflections
Radiation source: fine-focus sealed tube1386 reflections with I > 2σ(I)
graphiteRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1720
Tmin = 0.702, Tmax = 0.792k = 89
5787 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + (0.0261P)2]
where P = (Fo2 + 2Fc2)/3
1944 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.28 e Å3
9 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn2(SO4)2(C6H5NO2)2(H2O)6]V = 2319.6 (8) Å3
Mr = 656.32Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 16.886 (3) ŵ = 1.36 mm1
b = 7.6022 (15) ÅT = 291 K
c = 18.070 (4) Å0.28 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1386 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.792Rint = 0.033
5787 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.28 e Å3
S = 1.26Δρmin = 0.24 e Å3
1944 reflectionsAbsolute structure: ?
181 parametersFlack parameter: ?
9 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

the reflection "2 0 0" was removed because it was affected by the beam stop

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.80634 (14)0.4943 (3)0.39991 (16)0.0274 (6)
C20.73913 (18)0.5011 (4)0.44213 (18)0.0441 (8)
H20.74290.50100.49350.053*
C30.66613 (19)0.5082 (5)0.4087 (2)0.0608 (10)
H30.62040.51320.43730.073*
C40.66096 (19)0.5077 (5)0.3323 (2)0.0580 (10)
H40.61190.51340.30890.070*
C50.72870 (19)0.4990 (4)0.29191 (19)0.0513 (9)
H50.72630.49710.24050.062*
C60.88940 (16)0.4876 (3)0.43176 (16)0.0281 (6)
Mn11.06804 (2)0.42796 (5)0.39782 (2)0.02431 (11)
N10.79903 (13)0.4929 (3)0.32634 (13)0.0341 (6)
H10.84130.48790.29990.041*
O10.94438 (10)0.5098 (3)0.38689 (11)0.0369 (5)
O21.10645 (13)0.5419 (2)0.50058 (11)0.0407 (5)
O31.11498 (11)0.6541 (2)0.34100 (11)0.0326 (5)
O41.03729 (12)0.8763 (2)0.40293 (11)0.0413 (5)
O51.08436 (11)0.9258 (2)0.28009 (10)0.0364 (5)
O61.17596 (11)0.9245 (2)0.38020 (12)0.0439 (6)
S11.10322 (4)0.84382 (8)0.35237 (4)0.02353 (15)
O1W1.04261 (13)0.2883 (3)0.29403 (12)0.0443 (6)
H111.0473 (18)0.183 (2)0.2892 (18)0.066*
H121.0020 (14)0.322 (3)0.2717 (18)0.066*
O2W1.02785 (15)0.2033 (3)0.46116 (13)0.0499 (6)
H211.023 (2)0.104 (3)0.4449 (17)0.075*
H221.007 (2)0.208 (4)0.5024 (12)0.075*
O3W1.18013 (11)0.2837 (3)0.38886 (16)0.0541 (7)
H311.1775 (19)0.177 (2)0.385 (2)0.081*
H321.2266 (12)0.317 (4)0.386 (2)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (15)0.0338 (14)0.0214 (16)0.0010 (10)0.0006 (13)0.0029 (13)
C20.0358 (19)0.069 (2)0.0275 (18)0.0012 (15)0.0040 (15)0.0017 (15)
C30.0265 (17)0.092 (3)0.064 (3)0.0010 (16)0.0128 (19)0.004 (2)
C40.0307 (19)0.084 (3)0.060 (3)0.0043 (16)0.0178 (18)0.008 (2)
C50.041 (2)0.079 (2)0.034 (2)0.0091 (16)0.0136 (16)0.0051 (17)
C60.0309 (16)0.0268 (15)0.0268 (17)0.0002 (11)0.0045 (14)0.0049 (12)
Mn10.02487 (19)0.0253 (2)0.0228 (2)0.00078 (16)0.0004 (2)0.0016 (2)
N10.0271 (13)0.0522 (15)0.0231 (14)0.0037 (10)0.0008 (10)0.0015 (11)
O10.0254 (11)0.0471 (12)0.0381 (13)0.0007 (8)0.0027 (10)0.0033 (9)
O20.0474 (13)0.0493 (14)0.0254 (12)0.0007 (10)0.0098 (10)0.0025 (10)
O30.0453 (13)0.0190 (10)0.0336 (12)0.0011 (8)0.0102 (9)0.0012 (9)
O40.0517 (12)0.0352 (12)0.0369 (12)0.0031 (8)0.0185 (11)0.0012 (10)
O50.0460 (12)0.0352 (11)0.0280 (11)0.0014 (9)0.0035 (9)0.0077 (9)
O60.0364 (11)0.0309 (11)0.0643 (16)0.0000 (9)0.0172 (10)0.0037 (11)
S10.0258 (3)0.0226 (3)0.0222 (4)0.0006 (3)0.0009 (3)0.0009 (3)
O1W0.0555 (14)0.0397 (12)0.0376 (13)0.0123 (10)0.0153 (11)0.0104 (11)
O2W0.0808 (17)0.0247 (12)0.0441 (15)0.0037 (11)0.0313 (13)0.0021 (11)
O3W0.0279 (10)0.0296 (11)0.105 (2)0.0007 (8)0.0048 (14)0.0058 (14)
Geometric parameters (Å, °) top
C1—N11.335 (3)Mn1—O12.1878 (18)
C1—C21.368 (4)Mn1—O3W2.1934 (19)
C1—C61.517 (3)Mn1—O1W2.198 (2)
C2—C31.374 (4)N1—H10.8600
C2—H20.9300O2—C6i1.245 (3)
C3—C41.383 (5)O3—S11.4703 (17)
C3—H30.9300O4—S11.4613 (19)
C4—C51.358 (5)O5—S11.4817 (19)
C4—H40.9300O6—S11.4622 (19)
C5—N11.342 (4)O1W—H110.811 (17)
C5—H50.9300O1W—H120.835 (17)
C6—O11.244 (3)O2W—H210.817 (17)
C6—O2i1.245 (3)O2W—H220.827 (17)
Mn1—O22.1492 (19)O3W—H310.818 (17)
Mn1—O32.1536 (18)O3W—H320.826 (17)
Mn1—O2W2.1652 (19)
N1—C1—C2118.6 (3)O1—Mn1—O3W163.57 (8)
N1—C1—C6117.6 (2)O2—Mn1—O1W172.34 (8)
C2—C1—C6123.8 (3)O3—Mn1—O1W92.91 (8)
C1—C2—C3120.0 (3)O2W—Mn1—O1W90.50 (9)
C1—C2—H2120.0O1—Mn1—O1W82.76 (8)
C3—C2—H2120.0O3W—Mn1—O1W82.19 (9)
C2—C3—C4119.7 (3)C1—N1—C5122.9 (3)
C2—C3—H3120.1C1—N1—H1118.5
C4—C3—H3120.1C5—N1—H1118.5
C5—C4—C3118.9 (3)C6—O1—Mn1127.94 (18)
C5—C4—H4120.6C6i—O2—Mn1142.42 (18)
C3—C4—H4120.6S1—O3—Mn1131.82 (11)
N1—C5—C4119.9 (3)O4—S1—O6110.72 (12)
N1—C5—H5120.1O4—S1—O3110.86 (10)
C4—C5—H5120.1O6—S1—O3110.26 (11)
O1—C6—O2i128.5 (3)O4—S1—O5108.44 (12)
O1—C6—C1116.0 (2)O6—S1—O5107.90 (12)
O2i—C6—C1115.5 (3)O3—S1—O5108.57 (11)
O2—Mn1—O388.79 (7)Mn1—O1W—H11123 (2)
O2—Mn1—O2W87.48 (9)Mn1—O1W—H12115 (2)
O3—Mn1—O2W175.65 (9)H11—O1W—H12109 (2)
O2—Mn1—O1104.56 (8)Mn1—O2W—H21125 (2)
O3—Mn1—O194.65 (7)Mn1—O2W—H22125 (2)
O2W—Mn1—O188.46 (9)H21—O2W—H22109 (2)
O2—Mn1—O3W90.28 (9)Mn1—O3W—H31117 (2)
O3—Mn1—O3W92.65 (8)Mn1—O3W—H32132 (2)
O2W—Mn1—O3W85.13 (9)H31—O3W—H32111 (3)
N1—C1—C2—C30.7 (4)O3—Mn1—O1—C6145.0 (2)
C6—C1—C2—C3179.5 (3)O2W—Mn1—O1—C632.0 (2)
C1—C2—C3—C40.2 (5)O3W—Mn1—O1—C698.9 (4)
C2—C3—C4—C50.5 (5)O1W—Mn1—O1—C6122.7 (2)
C3—C4—C5—N10.8 (5)O3—Mn1—O2—C6i176.0 (3)
N1—C1—C6—O111.2 (3)O2W—Mn1—O2—C6i1.7 (3)
C2—C1—C6—O1169.0 (3)O1—Mn1—O2—C6i89.5 (3)
N1—C1—C6—O2i167.9 (2)O3W—Mn1—O2—C6i83.4 (3)
C2—C1—C6—O2i11.9 (4)O2—Mn1—O3—S151.74 (16)
C2—C1—N1—C50.4 (4)O1—Mn1—O3—S152.77 (16)
C6—C1—N1—C5179.8 (2)O3W—Mn1—O3—S1141.97 (17)
C4—C5—N1—C10.3 (5)O1W—Mn1—O3—S1135.73 (16)
O2i—C6—O1—Mn121.0 (4)Mn1—O3—S1—O412.1 (2)
C1—C6—O1—Mn1157.90 (17)Mn1—O3—S1—O6110.89 (16)
O2—Mn1—O1—C655.0 (2)Mn1—O3—S1—O5131.11 (14)
Symmetry codes: (i) −x+2, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5ii0.861.972.799 (3)161.
O1W—H11···O5iii0.81 (2)2.06 (2)2.856 (3)168 (3)
O1W—H12···O5ii0.84 (2)1.91 (2)2.735 (3)173 (3)
O2W—H21···O4iii0.82 (2)1.90 (2)2.704 (3)167 (4)
O2W—H22···O4i0.83 (2)1.97 (2)2.758 (3)158 (3)
O3W—H31···O6iii0.82 (2)1.92 (2)2.736 (3)177 (4)
O3W—H32···O6iv0.83 (2)1.84 (2)2.660 (3)172 (3)
Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) x, y−1, z; (i) −x+2, −y+1, −z+1; (iv) −x+5/2, y−1/2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.861.972.799 (3)161.
O1W—H11···O5ii0.81 (2)2.06 (2)2.856 (3)168 (3)
O1W—H12···O5i0.84 (2)1.91 (2)2.735 (3)173 (3)
O2W—H21···O4ii0.82 (2)1.90 (2)2.704 (3)167 (4)
O2W—H22···O4iii0.83 (2)1.97 (2)2.758 (3)158 (3)
O3W—H31···O6ii0.82 (2)1.92 (2)2.736 (3)177 (4)
O3W—H32···O6iv0.83 (2)1.84 (2)2.660 (3)172 (3)
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+5/2, y−1/2, z.
Acknowledgements top

HAR and BB thank Islamic Azad University, Firoozabad Branch. BB thanks Dr Reza Kia for the data collection, structure determination, refinement and manuscript preparation.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Lee, S., Shin, D. M. & Chung, Y. K. (2004). Chem. Eur. J. 10, 3158–3163.

Mautner, F. A., Abu-Youssef, M. A. M. & Goher, M. A. S. (1997). Polyhedron, 16, 235–241.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.