supplementary materials


bt5747 scheme

Acta Cryst. (2012). E68, o156-o157    [ doi:10.1107/S1600536811053682 ]

Methyl (Z)-2-[(2,4-dioxothiazolidin-3-yl)methyl]-3-(2-methylphenyl)prop-2-enoate

S. Vijayakumar, S. Murugavel, D. Kannan and M. Bakthadoss

Abstract top

The C=C bond in the title compound, C15H15NO4S, has a Z configuration. The thiazolidine ring is essentially planar [maximum deviation = 0.008 (1) Å for the N atom] and is oriented at a dihedral angle of 59.1 (1)° with respect to the benzene ring. In the crystal, pairs of C-H...O hydrogen bonds link centrosymmetrically related molecules into dimers, generating R22(18) ring motifs. The crystal packing is further stabilized by C-H...[pi] and C-O...[pi] [O...centroid = 3.412 (2) Å and C-O...centroid = 115.0 (1)°] interactions.

Comment top

Thiazolidine derivatives exhibit herbicidal (Chen et al., 2000; Vicentini et al., 1998), antineoplastic (Vigorita et al., 1992), hypolipidemic (Jacop & Kutty, 2004) and anti-inflammatory (Kalia et al., 2007) activities. In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The molecules of the title compound display a Z– configuration about the C6C5 double bond. The thiazolidine moiety (S1/N1/C1-C3) is essentially planar [maximum deviation = -0.008 (1) Å for the N1 atom] and lies at an angle 59.1 (1)° with respect to the benzene ring. The significant difference in length of the C13—O4 = 1.334 (2) Å and C14—O4 = 1.446 (2) Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O3C13—O4—C14 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986). The sum of bond angles around N1 (360°) indicates that N1 is in sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Fun et al., 2009, Vennila et al., 2011).

In the crystal packing (Fig. 2), the molecules at x, y, z and 1-x, y, 1/2-z are linked by C8—H8···O2 hydrogen bonds into cyclic centrosymmetric R22(18) dimers (Bernstein et al., 1995). The crystal packing is further stabilized by C—H···π and C—O···π interactions, the first one between a H9 atom and neighbouring benene ring (C7–C12), with a C9—H9···Cg1ii seperation of 2.90 Å (Fig. 3 and Table 1; Cg1 is the centroid of the C7–C12 benzene ring, Symmetry code as in Fig.3), and the second one between oxygen atom O1 and neighbouring thiazolidine ring (N1/S1/C1–C3), with a Ol···centroid(Cg2iii) distance of 3.412 (2) Å and a C1—O1···Cg2iii angle of 115.0 (1)° (Fig. 3; Cg2 is the centroid of the N1/S1/C1—C3 thiazolidine ring, Symmetry code as in Fig. 3).

Related literature top

For the biolgical activity of thiazolidine derivatives, see: Chen et al. (2000); Jacop & Kutty (2004); Kalia et al. (2007); Vicentini et al. (1998); Vigorita et al. (1992). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For closely related structures, see: Fun et al. (2009); Vennila et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of thiazolidine-2,4-dione (1 mmol, 0.117 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (Z)-methyl-2 -(bromomethyl)-3-(2-methylphenyl)-prop-2-enoate (1 mmol, 0.269 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. Ethyl acetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.290 g, 95% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(18) centrosymmetric dimer. [Symmetry code: (i) 1-x, y, 1/2-z].
[Figure 3] Fig. 3. A view of the C—H···π (red dotted lines) and C—O···π (blue dotted lines) interactions, in the molecular structure of the title compound. Cg1 and Cg2 are the centroids of the (C7–C12) benzene ring and (N1/S1/C1–C3) thiazolidine ring, respectively. [Symmetry code: (ii) 3/2-x, 1/2+y, 1/2-z; (iii) 1-x, 2-y, -z.]
Methyl (Z)-2-[(2,4-dioxothiazolidin-3-yl)methyl]- 3-(2-methylphenyl)prop-2-enoate top
Crystal data top
C15H15NO4SF(000) = 1280
Mr = 305.34Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4370 reflections
a = 21.3744 (10) Åθ = 2.0–30.2°
b = 6.9762 (3) ŵ = 0.23 mm1
c = 20.3084 (10) ÅT = 293 K
β = 103.361 (2)°Block, colourless
V = 2946.3 (2) Å30.26 × 0.23 × 0.18 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4354 independent reflections
Radiation source: fine-focus sealed tube2966 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 30.2°, θmin = 2.0°
ω scansh = 2930
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 98
Tmin = 0.941, Tmax = 0.959l = 2818
18757 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.2153P]
where P = (Fo2 + 2Fc2)/3
4354 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H15NO4SV = 2946.3 (2) Å3
Mr = 305.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.3744 (10) ŵ = 0.23 mm1
b = 6.9762 (3) ÅT = 293 K
c = 20.3084 (10) Å0.26 × 0.23 × 0.18 mm
β = 103.361 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2966 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.959Rint = 0.027
18757 measured reflectionsθmax = 30.2°
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.32 e Å3
4354 reflectionsAbsolute structure: ?
192 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34666 (2)0.81404 (9)0.02048 (3)0.06438 (17)
N10.46454 (5)0.81887 (16)0.09106 (6)0.0362 (3)
C40.51881 (7)0.82904 (19)0.14998 (8)0.0383 (3)
H4A0.50260.85290.19010.046*
H4B0.54600.93640.14440.046*
C30.40174 (7)0.8361 (2)0.09848 (9)0.0414 (3)
O40.46444 (5)0.48419 (16)0.16471 (7)0.0588 (3)
C60.62202 (7)0.6461 (2)0.16616 (8)0.0414 (3)
H60.64160.52620.17140.050*
C70.66451 (6)0.8118 (2)0.16498 (7)0.0387 (3)
O20.38694 (6)0.86509 (19)0.15080 (7)0.0583 (3)
C80.66505 (7)0.9661 (2)0.20808 (8)0.0435 (3)
H80.63680.96770.23670.052*
O30.55140 (6)0.30807 (16)0.16562 (8)0.0638 (4)
C130.52619 (7)0.4616 (2)0.16372 (8)0.0432 (3)
C50.55872 (7)0.64927 (19)0.16051 (7)0.0378 (3)
C10.47255 (8)0.7930 (2)0.02682 (8)0.0473 (4)
O10.52437 (6)0.7789 (2)0.01315 (7)0.0677 (4)
C120.70731 (7)0.8089 (2)0.12198 (9)0.0463 (4)
C110.74813 (8)0.9646 (3)0.12352 (9)0.0542 (4)
H110.77600.96620.09450.065*
C90.70709 (8)1.1182 (3)0.20911 (9)0.0522 (4)
H90.70721.22070.23840.063*
C100.74848 (8)1.1161 (3)0.16660 (10)0.0563 (4)
H100.77681.21760.16700.068*
C20.40897 (9)0.7833 (4)0.02463 (9)0.0668 (6)
H2A0.40440.66050.04760.080*
H2B0.40660.88380.05810.080*
C140.42702 (10)0.3104 (3)0.16151 (13)0.0740 (6)
H14A0.42130.25440.11730.111*
H14B0.38580.34000.17010.111*
H14C0.44910.22140.19490.111*
C150.70806 (12)0.6449 (3)0.07429 (13)0.0782 (7)
H15A0.66910.64600.03940.117*
H15B0.71120.52620.09870.117*
H15C0.74430.65780.05420.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0359 (2)0.0934 (4)0.0619 (3)0.0073 (2)0.00745 (19)0.0024 (3)
N10.0322 (6)0.0367 (6)0.0412 (6)0.0031 (4)0.0117 (5)0.0009 (5)
C40.0378 (7)0.0337 (7)0.0434 (8)0.0037 (5)0.0092 (6)0.0015 (6)
C30.0367 (7)0.0370 (7)0.0537 (9)0.0041 (6)0.0171 (6)0.0012 (7)
O40.0437 (6)0.0390 (6)0.0968 (10)0.0075 (5)0.0228 (6)0.0094 (6)
C60.0419 (8)0.0363 (7)0.0463 (8)0.0011 (6)0.0110 (6)0.0068 (6)
C70.0307 (6)0.0412 (7)0.0425 (7)0.0006 (5)0.0049 (5)0.0076 (6)
O20.0509 (7)0.0672 (8)0.0649 (8)0.0050 (6)0.0300 (6)0.0141 (6)
C80.0352 (7)0.0517 (9)0.0421 (8)0.0012 (6)0.0057 (6)0.0007 (7)
O30.0621 (8)0.0351 (6)0.0998 (11)0.0017 (5)0.0304 (7)0.0084 (6)
C130.0463 (8)0.0347 (7)0.0505 (9)0.0031 (6)0.0150 (7)0.0036 (7)
C50.0394 (7)0.0338 (7)0.0413 (7)0.0034 (5)0.0114 (6)0.0031 (6)
C10.0422 (8)0.0594 (10)0.0431 (8)0.0062 (7)0.0154 (6)0.0020 (8)
O10.0476 (7)0.1061 (11)0.0566 (7)0.0012 (7)0.0266 (6)0.0016 (8)
C120.0402 (8)0.0503 (9)0.0498 (9)0.0006 (6)0.0135 (6)0.0031 (7)
C110.0370 (8)0.0683 (11)0.0586 (10)0.0074 (7)0.0141 (7)0.0107 (9)
C90.0434 (8)0.0533 (9)0.0537 (10)0.0066 (7)0.0016 (7)0.0059 (8)
C100.0410 (9)0.0574 (10)0.0656 (11)0.0153 (7)0.0025 (8)0.0059 (9)
C20.0475 (10)0.1065 (16)0.0468 (9)0.0154 (10)0.0116 (8)0.0008 (10)
C140.0562 (11)0.0524 (10)0.1121 (18)0.0215 (9)0.0171 (11)0.0127 (11)
C150.0886 (16)0.0700 (13)0.0914 (16)0.0096 (11)0.0524 (13)0.0158 (12)
Geometric parameters (Å, °) top
S1—C31.7485 (17)C13—C51.4911 (19)
S1—C21.7953 (19)C1—O11.2064 (19)
N1—C11.3665 (19)C1—C21.512 (2)
N1—C31.3901 (18)C12—C111.389 (2)
N1—C41.4631 (18)C12—C151.501 (3)
C4—C51.504 (2)C11—C101.371 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C9—C101.371 (3)
C3—O21.1939 (19)C9—H90.9300
O4—C131.3342 (18)C10—H100.9300
O4—C141.4457 (19)C2—H2A0.9700
C6—C51.331 (2)C2—H2B0.9700
C6—C71.474 (2)C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.386 (2)C14—H14C0.9600
C7—C121.403 (2)C15—H15A0.9600
C8—C91.387 (2)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
O3—C131.1953 (18)
C3—S1—C292.82 (8)N1—C1—C2112.00 (13)
C1—N1—C3116.89 (13)C11—C12—C7118.10 (16)
C1—N1—C4122.45 (12)C11—C12—C15120.67 (16)
C3—N1—C4120.67 (12)C7—C12—C15121.21 (15)
N1—C4—C5113.10 (12)C10—C11—C12121.87 (16)
N1—C4—H4A109.0C10—C11—H11119.1
C5—C4—H4A109.0C12—C11—H11119.1
N1—C4—H4B109.0C10—C9—C8119.50 (16)
C5—C4—H4B109.0C10—C9—H9120.3
H4A—C4—H4B107.8C8—C9—H9120.3
O2—C3—N1124.91 (15)C11—C10—C9120.04 (15)
O2—C3—S1124.04 (12)C11—C10—H10120.0
N1—C3—S1111.04 (11)C9—C10—H10120.0
C13—O4—C14116.05 (14)C1—C2—S1107.24 (12)
C5—C6—C7127.12 (13)C1—C2—H2A110.3
C5—C6—H6116.4S1—C2—H2A110.3
C7—C6—H6116.4C1—C2—H2B110.3
C8—C7—C12119.52 (14)S1—C2—H2B110.3
C8—C7—C6120.94 (14)H2A—C2—H2B108.5
C12—C7—C6119.46 (14)O4—C14—H14A109.5
C7—C8—C9120.95 (15)O4—C14—H14B109.5
C7—C8—H8119.5H14A—C14—H14B109.5
C9—C8—H8119.5O4—C14—H14C109.5
O3—C13—O4123.06 (14)H14A—C14—H14C109.5
O3—C13—C5125.24 (14)H14B—C14—H14C109.5
O4—C13—C5111.70 (12)C12—C15—H15A109.5
C6—C5—C13117.15 (13)C12—C15—H15B109.5
C6—C5—C4123.91 (13)H15A—C15—H15B109.5
C13—C5—C4118.92 (12)C12—C15—H15C109.5
O1—C1—N1123.70 (15)H15A—C15—H15C109.5
O1—C1—C2124.30 (15)H15B—C15—H15C109.5
C1—N1—C4—C560.93 (18)O4—C13—C5—C47.7 (2)
C3—N1—C4—C5119.28 (14)N1—C4—C5—C6125.99 (15)
C1—N1—C3—O2177.60 (15)N1—C4—C5—C1352.85 (18)
C4—N1—C3—O22.2 (2)C3—N1—C1—O1178.80 (16)
C1—N1—C3—S11.36 (16)C4—N1—C1—O11.0 (2)
C4—N1—C3—S1178.84 (10)C3—N1—C1—C21.4 (2)
C2—S1—C3—O2178.29 (16)C4—N1—C1—C2178.78 (15)
C2—S1—C3—N10.68 (13)C8—C7—C12—C111.2 (2)
C5—C6—C7—C853.3 (2)C6—C7—C12—C11178.06 (14)
C5—C6—C7—C12129.92 (17)C8—C7—C12—C15179.69 (17)
C12—C7—C8—C90.3 (2)C6—C7—C12—C153.5 (2)
C6—C7—C8—C9177.09 (14)C7—C12—C11—C101.6 (3)
C14—O4—C13—O35.9 (3)C15—C12—C11—C10179.94 (19)
C14—O4—C13—C5174.51 (16)C7—C8—C9—C100.3 (2)
C7—C6—C5—C13179.58 (15)C12—C11—C10—C91.0 (3)
C7—C6—C5—C41.6 (3)C8—C9—C10—C110.0 (3)
O3—C13—C5—C66.2 (3)O1—C1—C2—S1179.42 (16)
O4—C13—C5—C6173.39 (14)N1—C1—C2—S10.8 (2)
O3—C13—C5—C4172.74 (17)C3—S1—C2—C10.06 (15)
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.553.379 (2)148.
C9—H9···Cg1ii0.932.903.677 (2)142
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1, −y, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.553.379 (2)148.
C9—H9···Cg1ii0.932.903.677 (2)142
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1, −y, z−1/2.
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009). Acta Cryst. E65, o2094.

Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76–79.

Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616–622.

Merlino, S. (1971). Acta Cryst. B27, 2491–2492.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.

Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902.

Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.

Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906.