organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-N′-[(2-hydroxynaphthalen-1-yl)methyl­idene]benzohydrazide

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 18 November 2011; accepted 26 November 2011; online 3 December 2011)

In the title mol­ecule, C18H13FN2O2, the hy­droxy group is involved in an intra­molecular O—H⋯N hydrogen bond. The naphthyl ring system and the benzene ring form a dihedral angle of 31.0 (2)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [101].

Related literature

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For coordination compounds with benzohydrazide ligands, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.]); Liu et al. (2011[Liu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.]); Zhou et al. (2011[Zhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.]); Meng et al. (2011[Meng, X.-F., Wang, D.-Y. & Ma, J.-J. (2011). Acta Cryst. E67, o3109.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13FN2O2

  • Mr = 308.30

  • Monoclinic, C c

  • a = 7.078 (3) Å

  • b = 29.1953 (16) Å

  • c = 7.3013 (10) Å

  • β = 106.521 (3)°

  • V = 1446.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 4745 measured reflections

  • 2641 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.03

  • 2641 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (1) 1.91 (2) 2.785 (3) 163 (4)
O2—H2⋯N2 0.82 1.83 2.545 (4) 145
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known due to their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds can also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010; Zhang et al., 2010). As a contribution to a structural study on hydrazone compounds, we present here the crystal structure of the title compound (I) obtained in the reaction of 2-hydroxy-1-naphthaldehyde with 2-fluorobenzohydrazide in methanol.

In (I) (Fig. 1), the naphthyl mean plane and the benzene ring form a dihedral angle of 31.0 (2)°. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported for related compounds (Suleiman Gwaram et al., 2010; Liu et al., 2011; Zhou et al., 2011; Meng et al., 2011).

In the crystal, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2) propagated in [101].

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For coordination compounds with benzohydrazide ligands, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For the crystal structures of similar compounds, see: Suleiman Gwaram et al. (2010); Liu et al. (2011); Zhou et al. (2011); Meng et al. (2011).

Experimental top

To a methanol solution (20 ml) of 2-hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) and 2-fluorobenzohydrazide (0.1 mmol, 15.4 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The amino H atom was located in a difference Fourier map and was refined with a distance restraint, N—H = 0.90 (1) Å. The C- and O-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 × Ueq(C) and 1.5 × Ueq(O). In the absence of any significant anomalous scatterers in the molecule, the 1057 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 30% probability level. Intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing with intermolecular N—H···O hydrogen-bonds shown by dashed lines. H-atoms not involved in hydrogen bonding omitted for clarity.
2-Fluoro-N'-[(2-hydroxynaphthalen-1-yl)methylidene]benzohydrazide top
Crystal data top
C18H13FN2O2F(000) = 640
Mr = 308.30Dx = 1.416 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 7.078 (3) ÅCell parameters from 1565 reflections
b = 29.1953 (16) Åθ = 2.7–24.3°
c = 7.3013 (10) ŵ = 0.10 mm1
β = 106.521 (3)°T = 298 K
V = 1446.5 (6) Å3Block, colourless
Z = 40.20 × 0.17 × 0.17 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2641 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scanθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.980, Tmax = 0.983k = 3736
4745 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.0478P]
where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H13FN2O2V = 1446.5 (6) Å3
Mr = 308.30Z = 4
Monoclinic, CcMo Kα radiation
a = 7.078 (3) ŵ = 0.10 mm1
b = 29.1953 (16) ÅT = 298 K
c = 7.3013 (10) Å0.20 × 0.17 × 0.17 mm
β = 106.521 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1777 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.036
4745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2641 reflectionsΔρmin = 0.16 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1283 (4)0.37460 (7)0.8168 (4)0.0749 (7)
N10.1961 (4)0.24093 (9)0.8406 (4)0.0472 (7)
N20.0468 (4)0.20916 (9)0.8074 (4)0.0454 (7)
O10.0092 (3)0.29182 (7)0.6358 (3)0.0568 (6)
O20.3144 (4)0.18598 (9)0.7215 (4)0.0626 (7)
H20.22110.20320.72830.094*
C10.3335 (4)0.31244 (10)0.8066 (4)0.0406 (7)
C20.3090 (5)0.35837 (11)0.8366 (5)0.0498 (8)
C30.4602 (7)0.38825 (14)0.8874 (6)0.0664 (11)
H30.43770.41910.90550.080*
C40.6445 (7)0.37250 (16)0.9116 (6)0.0723 (13)
H40.75000.39270.94820.087*
C50.6796 (5)0.32759 (16)0.8836 (6)0.0698 (12)
H50.80750.31730.89890.084*
C60.5243 (5)0.29761 (13)0.8327 (5)0.0549 (9)
H60.54800.26680.81560.066*
C70.1631 (4)0.28143 (10)0.7509 (4)0.0412 (7)
C80.0955 (5)0.17013 (11)0.8843 (5)0.0427 (7)
H80.22660.16420.94880.051*
C90.0507 (4)0.13518 (11)0.8723 (4)0.0417 (7)
C100.2470 (5)0.14513 (12)0.7981 (5)0.0485 (8)
C110.3917 (6)0.11228 (14)0.7994 (6)0.0615 (10)
H110.52450.11940.74950.074*
C120.3365 (6)0.07047 (14)0.8733 (6)0.0655 (11)
H120.43340.04900.87330.079*
C130.1387 (6)0.05826 (11)0.9502 (5)0.0534 (9)
C140.0837 (7)0.01541 (13)1.0315 (6)0.0691 (11)
H140.18100.00601.03140.083*
C150.1059 (8)0.00411 (13)1.1100 (6)0.0718 (12)
H150.13930.02461.16450.086*
C160.2514 (6)0.03585 (12)1.1089 (5)0.0641 (10)
H160.38320.02841.16350.077*
C170.2030 (5)0.07762 (10)1.0289 (5)0.0505 (8)
H170.30300.09821.02720.061*
C180.0072 (5)0.09071 (10)0.9490 (4)0.0436 (8)
H10.311 (4)0.2354 (13)0.931 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0780 (15)0.0538 (12)0.0873 (17)0.0145 (11)0.0145 (12)0.0005 (11)
N10.0436 (15)0.0432 (15)0.0443 (17)0.0058 (11)0.0042 (12)0.0034 (12)
N20.0497 (16)0.0401 (15)0.0415 (16)0.0063 (12)0.0048 (12)0.0037 (12)
O10.0516 (14)0.0480 (12)0.0549 (16)0.0006 (10)0.0108 (12)0.0027 (11)
O20.0512 (13)0.0647 (17)0.0658 (17)0.0022 (12)0.0066 (12)0.0068 (13)
C10.0448 (17)0.0422 (17)0.0290 (17)0.0014 (13)0.0011 (13)0.0037 (13)
C20.059 (2)0.0475 (19)0.0366 (19)0.0014 (17)0.0041 (16)0.0039 (15)
C30.087 (3)0.053 (2)0.049 (2)0.018 (2)0.004 (2)0.0039 (18)
C40.077 (3)0.082 (3)0.047 (2)0.037 (2)0.000 (2)0.014 (2)
C50.046 (2)0.105 (3)0.055 (2)0.009 (2)0.0088 (18)0.020 (2)
C60.048 (2)0.069 (2)0.046 (2)0.0003 (17)0.0103 (15)0.0072 (17)
C70.0419 (17)0.0411 (17)0.0361 (18)0.0043 (13)0.0040 (15)0.0010 (14)
C80.0414 (16)0.0457 (18)0.0379 (18)0.0017 (13)0.0060 (14)0.0039 (14)
C90.0494 (19)0.0422 (18)0.0318 (17)0.0057 (14)0.0087 (14)0.0042 (13)
C100.0467 (19)0.059 (2)0.036 (2)0.0062 (15)0.0065 (15)0.0045 (16)
C110.047 (2)0.079 (3)0.056 (2)0.0119 (18)0.0103 (17)0.007 (2)
C120.066 (3)0.075 (3)0.058 (3)0.031 (2)0.021 (2)0.012 (2)
C130.072 (2)0.049 (2)0.041 (2)0.0151 (17)0.0197 (17)0.0073 (16)
C140.102 (3)0.053 (2)0.056 (3)0.024 (2)0.029 (3)0.0059 (19)
C150.112 (4)0.047 (2)0.055 (3)0.005 (2)0.022 (3)0.0050 (18)
C160.079 (3)0.057 (2)0.052 (2)0.007 (2)0.0120 (19)0.0018 (18)
C170.059 (2)0.0412 (17)0.049 (2)0.0013 (16)0.0116 (17)0.0006 (15)
C180.0588 (19)0.0397 (17)0.0340 (18)0.0087 (14)0.0159 (15)0.0080 (13)
Geometric parameters (Å, º) top
F1—C21.332 (4)C8—C91.438 (4)
N1—C71.339 (4)C8—H80.9300
N1—N21.375 (3)C9—C101.371 (4)
N1—H10.905 (10)C9—C181.427 (4)
N2—C81.274 (4)C10—C111.405 (5)
O1—C71.210 (4)C11—C121.347 (5)
O2—C101.346 (4)C11—H110.9300
O2—H20.8200C12—C131.398 (5)
C1—C61.379 (5)C12—H120.9300
C1—C21.378 (4)C13—C141.392 (5)
C1—C71.470 (4)C13—C181.403 (4)
C2—C31.348 (5)C14—C151.341 (6)
C3—C41.347 (6)C14—H140.9300
C3—H30.9300C15—C161.387 (6)
C4—C51.361 (6)C15—H150.9300
C4—H40.9300C16—C171.353 (4)
C5—C61.371 (5)C16—H160.9300
C5—H50.9300C17—C181.396 (5)
C6—H60.9300C17—H170.9300
C7—N1—N2119.4 (2)C10—C9—C8120.3 (3)
C7—N1—H1121 (3)C18—C9—C8120.0 (3)
N2—N1—H1120 (3)O2—C10—C9123.5 (3)
C8—N2—N1115.4 (3)O2—C10—C11115.8 (3)
C10—O2—H2109.5C9—C10—C11120.7 (3)
C6—C1—C2116.5 (3)C12—C11—C10119.5 (4)
C6—C1—C7122.6 (3)C12—C11—H11120.2
C2—C1—C7120.9 (3)C10—C11—H11120.2
F1—C2—C3117.5 (3)C11—C12—C13122.3 (3)
F1—C2—C1119.3 (3)C11—C12—H12118.8
C3—C2—C1123.2 (3)C13—C12—H12118.8
C4—C3—C2118.6 (4)C14—C13—C12121.8 (4)
C4—C3—H3120.7C14—C13—C18119.5 (4)
C2—C3—H3120.7C12—C13—C18118.7 (3)
C3—C4—C5121.4 (4)C15—C14—C13121.8 (4)
C3—C4—H4119.3C15—C14—H14119.1
C5—C4—H4119.3C13—C14—H14119.1
C4—C5—C6119.3 (4)C14—C15—C16119.2 (4)
C4—C5—H5120.3C14—C15—H15120.4
C6—C5—H5120.3C16—C15—H15120.4
C5—C6—C1121.0 (4)C17—C16—C15120.5 (4)
C5—C6—H6119.5C17—C16—H16119.8
C1—C6—H6119.5C15—C16—H16119.8
O1—C7—N1123.9 (3)C16—C17—C18121.8 (3)
O1—C7—C1122.9 (3)C16—C17—H17119.1
N1—C7—C1113.2 (3)C18—C17—H17119.1
N2—C8—C9120.5 (3)C17—C18—C13117.2 (3)
N2—C8—H8119.7C17—C18—C9123.6 (3)
C9—C8—H8119.7C13—C18—C9119.1 (3)
C10—C9—C18119.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (1)1.91 (2)2.785 (3)163 (4)
O2—H2···N20.821.832.545 (4)145
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13FN2O2
Mr308.30
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)7.078 (3), 29.1953 (16), 7.3013 (10)
β (°) 106.521 (3)
V3)1446.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4745, 2641, 1777
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.03
No. of reflections2641
No. of parameters212
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.905 (10)1.908 (16)2.785 (3)163 (4)
O2—H2···N20.821.832.545 (4)145.4
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (grant No. B2011204051), the Development Foundation of the Department of Education of Hebei Province (grant No. 2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed
First citationSuleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721.  Web of Science CSD CrossRef IUCr Journals
First citationHoriuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS
First citationLiu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.  Web of Science CSD CrossRef IUCr Journals
First citationMeng, X.-F., Wang, D.-Y. & Ma, J.-J. (2011). Acta Cryst. E67, o3109.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals
First citationZhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds