supplementary materials


cv5213 scheme

Acta Cryst. (2012). E68, o223    [ doi:10.1107/S1600536811054535 ]

Ethane-1,2-diaminium (R)-2-[4-(1-carboxylatoethoxy)phenoxy]acetate

C.-Y. Ren, G.-F. Hou, Y.-H. Yu and J.-S. Gao

Abstract top

In the title compound, C2H10N22+·C11H10O62-, the two acetate groups of the cation form dihedral angles of 74.2 (4) and 63.9 (5)° with the central benzene ring. In the crystal, N-H...O hydrogen bonds link the cations and anions into layers parallel to the ab plane.

Comment top

The chiral ligands became one of the focus in supramolecular research due to their wide applications in catalytic and pharmaceutical industry. There are many reports about aromatic carboxylic acid, such as 4-carboxyphenoxyacetic acid (Gong et al., 2010). However, structural reports about chiral carboxylic acids are rare. Herein, we report the synthesis and structure of a new chiral aromatic carboxylic acid derivative.

The asymmertric unit of title compound contains one (R)-2-(4-(1-carboxyethoxy)phenoxy)acetate anion and one ethane-1,2-diaminium cation (Fig. 1). Two acetate groups of the anion twist towards the same side of the benzenyl plane with the torsion angles of 105.8 (4) and 116.1 (5) °, respectively. A double layers structure parallel to the ab plane is built up by N—H···O hydrogen bonds linking the anions and cations (Fig. 2, Table 1).

Related literature top

For the synthesis of the title chiral carboxylic acid, see: Bezwada et al. (2007). For the structure of a similar achiral carboxylic acid, see: Gong et al. (2010).

Experimental top

(R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid was prepared by the reaction of R-(+)-2-(4-hydroxy-phenoxy)propionic acid and methyl chloroacetate under alkaline condition (Bezwada et al., 2007). (R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid (0.048 g, 0.2 mmol) and ethylenediamine (1 mL, 0.2 mol / L) were dissolved in ethanol (15 mL). After stirring for 1 hour, the solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for a few days. Colourless block crystals of title compound were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 – 0.98 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a differece Fourier map and were refined with restraint N—H = 0.90 (1) Å, and Uiso(H) = 1.5Ueq(N). In the absence of any significant anomalous scatterers in the molecule, 1444 sets of Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view showing the intermolecular hydrogen bonds as dashed lines.
Ethane-1,2-diaminium (R)-2-[4-(1-carboxylatoethoxy)phenoxy]acetate top
Crystal data top
C2H10N22+·C11H10O62F(000) = 320
Mr = 300.31Dx = 1.338 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4706 reflections
a = 10.066 (2) Åθ = 3.0–27.6°
b = 6.7887 (14) ŵ = 0.11 mm1
c = 11.050 (2) ÅT = 293 K
β = 99.30 (3)°Needle, colorless
V = 745.2 (3) Å30.62 × 0.10 × 0.06 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3288 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
graphiteRint = 0.066
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1312
Tmin = 0.937, Tmax = 0.994k = 88
7250 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.081P)2]
where P = (Fo2 + 2Fc2)/3
3288 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.40 e Å3
7 restraintsΔρmin = 0.21 e Å3
Crystal data top
C2H10N22+·C11H10O62V = 745.2 (3) Å3
Mr = 300.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.066 (2) ŵ = 0.11 mm1
b = 6.7887 (14) ÅT = 293 K
c = 11.050 (2) Å0.62 × 0.10 × 0.06 mm
β = 99.30 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3288 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1855 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.994Rint = 0.066
7250 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176Δρmax = 0.40 e Å3
S = 1.01Δρmin = 0.21 e Å3
3288 reflectionsAbsolute structure: ?
209 parametersFlack parameter: ?
7 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2605 (4)0.7401 (6)0.3560 (4)0.0435 (9)
C20.3465 (5)0.8903 (5)0.3366 (4)0.0501 (11)
H20.31451.01870.32610.060*
C30.4808 (4)0.8504 (6)0.3325 (4)0.0505 (11)
H30.53870.95250.31990.061*
C40.5296 (4)0.6592 (6)0.3471 (4)0.0481 (10)
C50.4409 (4)0.5082 (6)0.3668 (4)0.0508 (11)
H50.47180.37900.37610.061*
C60.3102 (5)0.5494 (6)0.3723 (4)0.0506 (10)
H60.25280.44810.38720.061*
C70.0731 (4)0.9589 (6)0.3553 (4)0.0491 (10)
H70.13211.04000.41480.059*
C80.0612 (4)1.0535 (6)0.2292 (4)0.0462 (10)
C90.0588 (6)0.9415 (10)0.3946 (6)0.0858 (17)
H9A0.04920.87210.47120.129*
H9B0.11910.87040.33370.129*
H9C0.09451.07050.40450.129*
C100.7100 (5)0.4428 (7)0.3237 (4)0.0550 (11)
H10A0.69200.36350.39220.066*
H10B0.80680.44690.32670.066*
C110.6471 (4)0.3445 (6)0.2061 (4)0.0477 (10)
C120.2339 (4)0.5461 (6)0.0488 (4)0.0479 (10)
H12A0.30120.57380.12000.057*
H12B0.24070.64610.01260.057*
C130.2592 (4)0.3446 (6)0.0019 (4)0.0519 (11)
H13A0.26580.24780.06340.062*
H13B0.18380.30850.06420.062*
N10.0972 (3)0.5515 (5)0.0840 (3)0.0455 (8)
H310.025 (3)0.541 (8)0.024 (3)0.068*
H320.086 (5)0.678 (3)0.106 (4)0.068*
H330.066 (4)0.455 (5)0.128 (4)0.068*
N20.3835 (4)0.3422 (5)0.0555 (3)0.0475 (8)
H340.446 (4)0.367 (8)0.010 (3)0.071*
H350.392 (5)0.237 (5)0.103 (4)0.071*
H360.369 (5)0.441 (5)0.111 (4)0.071*
O10.1245 (3)0.7630 (4)0.3592 (3)0.0525 (8)
O20.0518 (4)1.2367 (4)0.2264 (3)0.0759 (11)
O30.0581 (3)0.9464 (4)0.1361 (3)0.0542 (7)
O40.6629 (3)0.6369 (4)0.3379 (3)0.0578 (8)
O50.5970 (3)0.4524 (4)0.1170 (3)0.0576 (8)
O60.6516 (4)0.1649 (5)0.2056 (3)0.0761 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (3)0.043 (2)0.032 (2)0.006 (2)0.0121 (18)0.0019 (17)
C20.075 (3)0.0274 (19)0.047 (3)0.0075 (18)0.009 (2)0.0032 (16)
C30.058 (3)0.044 (2)0.051 (3)0.010 (2)0.013 (2)0.008 (2)
C40.062 (3)0.042 (2)0.040 (2)0.007 (2)0.005 (2)0.0107 (19)
C50.065 (3)0.050 (3)0.038 (2)0.001 (2)0.011 (2)0.0002 (18)
C60.068 (3)0.040 (2)0.045 (3)0.012 (2)0.011 (2)0.001 (2)
C70.057 (2)0.047 (2)0.048 (3)0.005 (2)0.020 (2)0.002 (2)
C80.051 (2)0.038 (2)0.052 (3)0.004 (2)0.014 (2)0.0020 (19)
C90.085 (4)0.080 (4)0.100 (5)0.011 (3)0.038 (3)0.022 (3)
C100.061 (3)0.051 (2)0.053 (3)0.001 (2)0.009 (2)0.005 (2)
C110.063 (3)0.042 (2)0.040 (3)0.006 (2)0.013 (2)0.001 (2)
C120.058 (3)0.045 (2)0.041 (2)0.003 (2)0.0112 (19)0.004 (2)
C130.053 (3)0.046 (2)0.059 (3)0.0021 (19)0.014 (2)0.009 (2)
N10.052 (2)0.0373 (17)0.048 (2)0.0015 (17)0.0123 (16)0.0024 (17)
N20.057 (2)0.0417 (18)0.043 (2)0.0041 (18)0.0071 (17)0.0041 (16)
O10.0629 (18)0.0382 (14)0.060 (2)0.0010 (14)0.0213 (15)0.0086 (13)
O20.118 (3)0.0369 (17)0.079 (3)0.0101 (18)0.033 (2)0.0051 (15)
O30.0700 (19)0.0511 (16)0.0407 (18)0.0024 (15)0.0066 (14)0.0018 (14)
O40.0515 (17)0.0547 (18)0.067 (2)0.0070 (15)0.0098 (15)0.0218 (15)
O50.076 (2)0.0496 (16)0.0442 (18)0.0125 (16)0.0013 (15)0.0015 (15)
O60.125 (3)0.0359 (17)0.072 (2)0.0122 (19)0.027 (2)0.0036 (15)
Geometric parameters (Å, °) top
C1—C21.377 (6)C9—H9C0.9600
C1—O11.384 (5)C10—O41.418 (5)
C1—C61.389 (6)C10—C111.507 (6)
C2—C31.387 (6)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.387 (6)C11—O61.221 (5)
C3—H30.9300C11—O51.264 (5)
C4—O41.371 (5)C12—N11.489 (5)
C4—C51.399 (6)C12—C131.516 (5)
C5—C61.356 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—H60.9300C13—N21.468 (6)
C7—O11.426 (5)C13—H13A0.9700
C7—C91.467 (6)C13—H13B0.9700
C7—C81.522 (6)N1—H310.904 (10)
C7—H70.9800N1—H320.907 (10)
C8—O21.247 (5)N1—H330.900 (10)
C8—O31.256 (5)N2—H340.898 (10)
C9—H9A0.9600N2—H350.900 (10)
C9—H9B0.9600N2—H360.900 (10)
C2—C1—O1124.8 (4)O4—C10—H10A108.8
C2—C1—C6119.2 (4)C11—C10—H10A108.8
O1—C1—C6116.0 (4)O4—C10—H10B108.8
C1—C2—C3120.1 (4)C11—C10—H10B108.8
C1—C2—H2120.0H10A—C10—H10B107.7
C3—C2—H2120.0O6—C11—O5125.9 (4)
C2—C3—C4120.5 (4)O6—C11—C10115.8 (4)
C2—C3—H3119.7O5—C11—C10118.3 (4)
C4—C3—H3119.7N1—C12—C13109.6 (3)
O4—C4—C3115.3 (4)N1—C12—H12A109.7
O4—C4—C5126.0 (4)C13—C12—H12A109.7
C3—C4—C5118.8 (4)N1—C12—H12B109.7
C6—C5—C4120.2 (4)C13—C12—H12B109.7
C6—C5—H5119.9H12A—C12—H12B108.2
C4—C5—H5119.9N2—C13—C12111.3 (3)
C5—C6—C1121.2 (4)N2—C13—H13A109.4
C5—C6—H6119.4C12—C13—H13A109.4
C1—C6—H6119.4N2—C13—H13B109.4
O1—C7—C9104.9 (4)C12—C13—H13B109.4
O1—C7—C8113.3 (4)H13A—C13—H13B108.0
C9—C7—C8111.3 (4)C12—N1—H31119 (3)
O1—C7—H7109.0C12—N1—H32105 (3)
C9—C7—H7109.0H31—N1—H3299 (4)
C8—C7—H7109.0C12—N1—H33122 (3)
O2—C8—O3124.5 (4)H31—N1—H3391 (4)
O2—C8—C7116.0 (4)H32—N1—H33118 (5)
O3—C8—C7119.6 (4)C13—N2—H34102 (3)
C7—C9—H9A109.5C13—N2—H35114 (3)
C7—C9—H9B109.5H34—N2—H35120 (5)
H9A—C9—H9B109.5C13—N2—H36102 (3)
C7—C9—H9C109.5H34—N2—H36115 (5)
H9A—C9—H9C109.5H35—N2—H36102 (4)
H9B—C9—H9C109.5C1—O1—C7117.4 (3)
O4—C10—C11113.9 (4)C4—O4—C10117.4 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H33···O2i0.90 (1)1.86 (2)2.736 (5)164 (4)
N1—H32···O30.91 (1)1.88 (1)2.784 (5)174 (5)
N1—H31···O3ii0.90 (1)1.94 (3)2.764 (5)150 (5)
N2—H34···O50.90 (1)1.86 (2)2.736 (5)166 (5)
N2—H35···O5iii0.90 (1)1.94 (3)2.748 (5)148 (5)
N2—H36···O6iv0.90 (1)1.84 (1)2.736 (5)172 (5)
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) −x+1, y+1/2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H33···O2i0.90 (1)1.86 (2)2.736 (5)164 (4)
N1—H32···O30.91 (1)1.88 (1)2.784 (5)174 (5)
N1—H31···O3ii0.90 (1)1.94 (3)2.764 (5)150 (5)
N2—H34···O50.90 (1)1.86 (2)2.736 (5)166 (5)
N2—H35···O5iii0.90 (1)1.94 (3)2.748 (5)148 (5)
N2—H36···O6iv0.90 (1)1.84 (1)2.736 (5)172 (5)
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) −x+1, y+1/2, −z.
Acknowledgements top

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (PG09J001) and Heilongjiang University for supporting this work.

references
References top

Bezwada, R. S. (2007). US Patent 2007/0141113 A1.

Gong, Y.-N., Liu, C.-B., Ding, Y., Xiong, Z.-Q. & Xiong, L. M. (2010). J. Coord. Chem. 63, 1865–1872.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.