supplementary materials


cv5214 scheme

Acta Cryst. (2012). E68, m73    [ doi:10.1107/S1600536811053608 ]

Tripotassium (bis{[bis(carboxylatomethyl)amino]methyl}phosphinato)cuprate(II) dihydrate

L. Liu, R. Zhang, P. Fan, Z. Yu and X. Zhang

Abstract top

In the title compound, K3[Cu(C10H12N2O10P)]·2H2O, the CuII ion, one potassium cation and a P atom are situated on a twofold rotation axis. The CuII ion is coordinated by two N and four O atoms from one bis{[bis(carboxylatomethyl)amino]methyl}phosphinate ligand in a distorted octahedral coordination geometry. The two crystallographically independent potassium ions exhibit different coordination environments. The potassium ion in a general position is heptacoordinated by five carboxylate O atoms, one phosphinate O atom and one water molecule [K-O = 2.718 (3)-3.040 (3) Å], and the potassium ion situated on the twofold rotation axis is hexacoordinated by four carboxylate O atoms and two water molecules [K-O = 2.618 (3)-2.771 (3) Å]. The water molecules are also involved in formation of intermolecular O-H...O hydrogen bonds.

Comment top

The most famous chelating ligands are aminopolycarboxylic acids such as the ethylenediaminetetraacetic acid (edta). In the current continuing quest for new chelating ligands, some derivatives of edta, which have both similar chelating properties as edta and special chemical fragments, are discovered. Bis{[bis(carboxymethyl)amino]methyl}phosphinic acid (H5XT) is a good example which could be structurally looked as two equal half of edta connected by a phosphinate group. Previous research (Xu et al., 2001) has demonstrated that XT5- is able to form stable complexes with rare earth metal and cobalt ions. Herewith we present the crystal structure of the title compound (I).

In (I) (Fig. 1), the CuII ion exhibits a distorted octahedral coordination geometry, where two N and two carboxylate O atoms located at the equatorial positions. Other two carboxylate O atoms occupy the axial positions. The CuII ion, one potassium cation and a P atom are situated on a twofold axis. Two types of potassium ions with different coodination circumstances are distributed in the title complex (Fig. 2). K1 is hexacoordinated by four carboxylate O atoms and two water molecules; while K2 is heptacoordinated by five carboxylate O atoms, one phosphinate O atom and one water molecule. The bond distances and angles in the title coupound agree well with the corresponding bond distances and angles reported in related [Co(II)XT]3- complex (Xu et al., 2001).

Related literature top

For details of the synthesis of the ligand, see: Varga (1997); Tircsó et al. (2007). For the isotypic compound with Co(II), see: Xu et al. (2001).

Experimental top

The ligand, bis{[bis(carboxymethyl)amino]methyl}phosphinic acid(XT), was synthesized according to the known procedure (Varga, 1997; Tircsó et al., 2007).

The title complex was simply synthesized by mixing 0.4027 g XT, 0.1774 g CuCl2 and 5 ml water in a small beaker with sufficient stirring. When the solution became clear, KOH was used to adjust the pH value to 8. Then the beaker was transferred to a closed container of methanol. After methanol vapor diffusion for one week, blue transparent crystals were observed from the solution.

Refinement top

C-bound H atoms were geometrically positioned [C—H 0.97 Å], and refined as riding, with Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in a difference Fourier map, and refined with restraint O—H = 0.93 (2) Å, and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing a coordination environment of CuII, atomic numbering and 50% probability displacement ellipsoids [symmetry code: (A) 1 - x, -y, z]. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal structure of (I) showing the positions of K+ [symmetry code: (A) 1 - x,-y, z; (B) 1/2 + x,1/2 - y, -z; (C) x,y, -1 + z; (D) -1/2 + x,1/2 - y, 1 - z; (E) 3/2 - x,-1/2 + y,1 - z; (F) 3/2 - x,1/2 + y, 1 - z; (G) x,-1 + y, z; (H) 1 - x,-y,-1 + z; (I) -1/2 + x,-1/2 - y,1 - z; (J) -1/2 + x,1/2 - y,-z]. O6 belongs to the water molecule. H atoms omitted for clarity.
Tripotassium (bis{[bis(carboxylatomethyl)amino]methyl}phosphinato)cuprate(II) dihydrate top
Crystal data top
K3[Cu(C10H12N2O10P)]·2H2OF(000) = 574
Mr = 568.06Dx = 1.969 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 376 reflections
a = 11.880 (7) Åθ = 2.6–22.8°
b = 8.332 (5) ŵ = 1.94 mm1
c = 9.681 (6) ÅT = 273 K
V = 958.2 (10) Å3Block, blue
Z = 20.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1686 independent reflections
Radiation source: fine-focus sealed tube1553 reflections with I > 2σ(I)
graphiteRint = 0.041
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 147
Tmin = 0.643, Tmax = 0.760k = 99
3814 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.1108P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.42 e Å3
141 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 671 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.016 (19)
Crystal data top
K3[Cu(C10H12N2O10P)]·2H2OV = 958.2 (10) Å3
Mr = 568.06Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.880 (7) ŵ = 1.94 mm1
b = 8.332 (5) ÅT = 273 K
c = 9.681 (6) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1686 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1553 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.760Rint = 0.041
3814 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.27 e Å3
1686 reflectionsAbsolute structure: Flack (1983), 671 Friedel pairs
141 parametersFlack parameter: 0.016 (19)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.24820 (5)0.02067 (13)
N10.5819 (2)0.1559 (3)0.3846 (2)0.0241 (5)
O10.56779 (19)0.1530 (3)0.1064 (2)0.0350 (5)
O20.6252 (2)0.4027 (3)0.0863 (2)0.0439 (7)
O30.65208 (19)0.1264 (3)0.2638 (3)0.0431 (6)
O40.83096 (19)0.0736 (3)0.3018 (3)0.0480 (7)
O50.6061 (2)0.0298 (3)0.7037 (2)0.0451 (7)
O60.6136 (3)0.7735 (4)0.0772 (3)0.0451 (7)
K10.50000.50000.14025 (10)0.0354 (2)
K20.72836 (6)0.15198 (9)0.89192 (7)0.03197 (18)
P10.50000.00000.62460 (10)0.0294 (3)
C10.5802 (3)0.3100 (4)0.3092 (3)0.0309 (8)
H1A0.64030.37790.34350.037*
H1B0.50940.36410.32730.037*
C20.5938 (3)0.2890 (4)0.1561 (4)0.0279 (7)
C30.6992 (3)0.0996 (4)0.4033 (4)0.0314 (7)
H3A0.71040.07190.49970.038*
H3B0.75010.18710.38160.038*
C40.7300 (3)0.0441 (4)0.3151 (3)0.0300 (8)
C50.5181 (3)0.1745 (4)0.5159 (3)0.0279 (7)
H5B0.44390.21500.49300.033*
H5A0.55540.25650.57030.033*
H6A0.613 (3)0.835 (5)0.158 (3)0.059 (13)*
H6B0.569 (4)0.835 (6)0.017 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0246 (2)0.0185 (2)0.0189 (2)0.0019 (2)0.0000.000
N10.0280 (12)0.0227 (13)0.0216 (13)0.0016 (11)0.0028 (11)0.0039 (13)
O10.0404 (13)0.0380 (13)0.0266 (12)0.0059 (11)0.0010 (10)0.0022 (12)
O20.0466 (15)0.0481 (16)0.0369 (14)0.0133 (12)0.0063 (11)0.0228 (13)
O30.0383 (12)0.0399 (15)0.0510 (16)0.0032 (12)0.0113 (12)0.0146 (13)
O40.0315 (13)0.0526 (16)0.0599 (17)0.0113 (13)0.0084 (12)0.0057 (14)
O50.0594 (15)0.0483 (18)0.0277 (11)0.0152 (14)0.0179 (11)0.0126 (11)
O60.0528 (17)0.0480 (16)0.0346 (16)0.0074 (13)0.0055 (13)0.0145 (13)
K10.0282 (4)0.0441 (6)0.0339 (5)0.0023 (6)0.0000.000
K20.0348 (3)0.0312 (4)0.0299 (4)0.0003 (3)0.0005 (3)0.0034 (3)
P10.0408 (6)0.0328 (6)0.0145 (5)0.0103 (6)0.0000.000
C10.044 (2)0.0214 (18)0.0277 (17)0.0030 (14)0.0002 (15)0.0030 (14)
C20.0219 (15)0.036 (2)0.0260 (17)0.0021 (15)0.0033 (13)0.0058 (16)
C30.0267 (16)0.0380 (19)0.0296 (18)0.0031 (14)0.0025 (13)0.0026 (16)
C40.0267 (15)0.033 (2)0.0299 (16)0.0030 (14)0.0044 (14)0.0098 (13)
C50.0336 (18)0.0290 (16)0.0209 (14)0.0030 (14)0.0033 (13)0.0010 (13)
Geometric parameters (Å, °) top
Cu1—O1i2.039 (3)K1—O4vi2.618 (3)
Cu1—O12.039 (3)K1—O4vii2.618 (3)
Cu1—N12.092 (3)K1—O6viii2.718 (3)
Cu1—N1i2.092 (3)K1—O2viii2.771 (3)
Cu1—O3i2.097 (3)K2—O2iv2.717 (3)
Cu1—O32.097 (3)K2—O3iii2.775 (3)
N1—C11.478 (4)K2—O6iv2.788 (3)
N1—C31.482 (4)K2—O1ix2.819 (3)
N1—C51.488 (4)K2—O4iii3.040 (3)
O1—C21.270 (4)K2—O2ix3.067 (3)
O1—K2ii2.819 (3)K2—C2ix3.225 (4)
O2—C21.222 (4)K2—C4iii3.267 (4)
O2—K2iii2.717 (3)P1—O5i1.496 (2)
O2—K12.771 (3)P1—C5i1.807 (3)
O2—K2ii3.067 (3)P1—C51.807 (3)
O3—C41.255 (4)C1—C21.501 (5)
O3—K2iv2.775 (3)C1—H1A0.9700
O4—C41.231 (4)C1—H1B0.9700
O4—K1v2.618 (3)C2—K2ii3.225 (4)
O4—K2iv3.040 (3)C3—C41.515 (5)
O5—P11.496 (2)C3—H3A0.9700
O5—K22.779 (3)C3—H3B0.9700
O6—K12.718 (3)C4—K2iv3.267 (4)
O6—K2iii2.788 (3)C5—H5B0.9700
O6—H6A0.932 (19)C5—H5A0.9700
O6—H6B0.94 (2)
O1i—Cu1—O195.35 (14)O3iii—K2—O1ix138.11 (8)
O1i—Cu1—N1175.30 (10)O5—K2—O1ix97.50 (9)
O1—Cu1—N181.57 (10)O6iv—K2—O1ix88.91 (9)
O1i—Cu1—N1i81.57 (10)O2iv—K2—O4iii140.46 (8)
O1—Cu1—N1i175.30 (10)O3iii—K2—O4iii44.19 (7)
N1—Cu1—N1i101.72 (14)O5—K2—O4iii83.36 (8)
O1i—Cu1—O3i91.27 (10)O6iv—K2—O4iii106.25 (9)
O1—Cu1—O3i94.30 (10)O1ix—K2—O4iii107.17 (8)
N1—Cu1—O3i92.50 (10)O2iv—K2—O2ix136.78 (5)
N1i—Cu1—O3i82.27 (10)O3iii—K2—O2ix94.85 (8)
O1i—Cu1—O394.30 (10)O5—K2—O2ix124.36 (8)
O1—Cu1—O391.27 (10)O6iv—K2—O2ix68.10 (9)
N1—Cu1—O382.27 (10)O1ix—K2—O2ix43.61 (7)
N1i—Cu1—O392.50 (10)O4iii—K2—O2ix76.91 (8)
O3i—Cu1—O3171.73 (14)O2iv—K2—C2ix121.76 (9)
C1—N1—C3110.4 (3)O3iii—K2—C2ix116.68 (9)
C1—N1—C5108.9 (3)O5—K2—C2ix116.98 (9)
C3—N1—C5114.1 (2)O6iv—K2—C2ix72.25 (9)
C1—N1—Cu1102.74 (19)O1ix—K2—C2ix23.02 (8)
C3—N1—Cu1108.5 (2)O4iii—K2—C2ix96.20 (9)
C5—N1—Cu1111.52 (19)O2ix—K2—C2ix22.22 (7)
C2—O1—Cu1113.5 (2)O2iv—K2—C4iii122.90 (9)
C2—O1—K2ii96.7 (2)O3iii—K2—C4iii22.10 (7)
Cu1—O1—K2ii139.57 (12)O5—K2—C4iii95.70 (9)
C2—O2—K2iii138.2 (2)O6iv—K2—C4iii90.64 (9)
C2—O2—K1120.0 (2)O1ix—K2—C4iii123.49 (8)
K2iii—O2—K1100.46 (8)O4iii—K2—C4iii22.13 (7)
C2—O2—K2ii86.2 (2)O2ix—K2—C4iii84.76 (8)
K2iii—O2—K2ii108.21 (9)C2ix—K2—C4iii106.68 (9)
K1—O2—K2ii85.89 (8)O2iv—K2—K1ix176.86 (6)
C4—O3—Cu1113.0 (2)O3iii—K2—K1ix79.73 (7)
C4—O3—K2iv101.58 (19)O5—K2—K1ix89.39 (7)
Cu1—O3—K2iv137.40 (12)O6iv—K2—K1ix104.17 (8)
C4—O4—K1v139.7 (2)O1ix—K2—K1ix66.08 (6)
C4—O4—K2iv89.3 (2)O4iii—K2—K1ix41.09 (5)
K1v—O4—K2iv89.16 (9)O2ix—K2—K1ix43.94 (5)
P1—O5—K2133.30 (16)C2ix—K2—K1ix57.76 (7)
K1—O6—K2iii100.04 (10)C4iii—K2—K1ix59.39 (6)
K1—O6—H6A106 (3)O2iv—K2—K1iv40.23 (5)
K2iii—O6—H6A138 (3)O3iii—K2—K1iv96.76 (7)
K1—O6—H6B109 (4)O5—K2—K1iv127.58 (7)
K2iii—O6—H6B100 (3)O6iv—K2—K1iv39.37 (7)
H6A—O6—H6B102 (4)O1ix—K2—K1iv95.67 (7)
O4vi—K1—O4vii106.63 (14)O4iii—K2—K1iv138.99 (5)
O4vi—K1—O6108.58 (9)O2ix—K2—K1iv99.24 (6)
O4vii—K1—O687.12 (9)C2ix—K2—K1iv91.93 (7)
O4vi—K1—O6viii87.12 (9)C4iii—K2—K1iv117.81 (7)
O4vii—K1—O6viii108.58 (9)K1ix—K2—K1iv141.64 (3)
O6—K1—O6viii154.05 (12)O2iv—K2—K2xii125.03 (7)
O4vi—K1—O2162.36 (8)O3iii—K2—K2xii66.12 (7)
O4vii—K1—O289.57 (9)O5—K2—K2xii146.49 (6)
O6—K1—O278.53 (9)O6iv—K2—K2xii46.87 (7)
O6viii—K1—O280.99 (9)O1ix—K2—K2xii75.11 (6)
O4vi—K1—O2viii89.57 (9)O4iii—K2—K2xii68.44 (7)
O4vii—K1—O2viii162.36 (8)O2ix—K2—K2xii33.39 (5)
O6—K1—O2viii80.99 (9)C2ix—K2—K2xii52.12 (7)
O6viii—K1—O2viii78.53 (9)C4iii—K2—K2xii64.45 (7)
O2—K1—O2viii75.37 (12)K1ix—K2—K2xii57.52 (3)
O4vi—K1—K2x49.75 (7)K1iv—K2—K2xii85.90 (3)
O4vii—K1—K2x137.69 (7)O5—P1—O5i118.4 (2)
O6—K1—K2x73.15 (8)O5—P1—C5i105.36 (15)
O6viii—K1—K2x104.76 (8)O5i—P1—C5i109.36 (14)
O2—K1—K2x121.11 (7)O5—P1—C5109.36 (14)
O2viii—K1—K2x50.17 (6)O5i—P1—C5105.37 (15)
O4vi—K1—K2ii137.69 (7)C5i—P1—C5108.8 (2)
O4vii—K1—K2ii49.75 (7)N1—C1—C2112.7 (3)
O6—K1—K2ii104.76 (8)N1—C1—H1A109.1
O6viii—K1—K2ii73.15 (8)C2—C1—H1A109.1
O2—K1—K2ii50.17 (6)N1—C1—H1B109.1
O2viii—K1—K2ii121.11 (7)C2—C1—H1B109.1
K2x—K1—K2ii171.03 (3)H1A—C1—H1B107.8
O4vi—K1—K2iii148.97 (7)O2—C2—O1123.8 (3)
O4vii—K1—K2iii79.86 (7)O2—C2—C1119.3 (3)
O6—K1—K2iii40.59 (6)O1—C2—C1116.9 (3)
O6viii—K1—K2iii120.23 (7)O2—C2—K2ii71.6 (2)
O2—K1—K2iii39.30 (6)O1—C2—K2ii60.27 (17)
O2viii—K1—K2iii82.64 (7)C1—C2—K2ii151.4 (2)
K2x—K1—K2iii104.95 (4)N1—C3—C4114.1 (3)
K2ii—K1—K2iii69.69 (4)N1—C3—H3A108.7
O4vi—K1—K2xi79.86 (7)C4—C3—H3A108.7
O4vii—K1—K2xi148.97 (7)N1—C3—H3B108.7
O6—K1—K2xi120.23 (7)C4—C3—H3B108.7
O6viii—K1—K2xi40.59 (6)H3A—C3—H3B107.6
O2—K1—K2xi82.64 (7)O4—C4—O3124.7 (3)
O2viii—K1—K2xi39.30 (6)O4—C4—C3116.8 (3)
K2x—K1—K2xi69.69 (4)O3—C4—C3118.5 (3)
K2ii—K1—K2xi104.95 (4)O4—C4—K2iv68.5 (2)
K2iii—K1—K2xi110.52 (5)O3—C4—K2iv56.32 (16)
O2iv—K2—O3iii102.89 (9)C3—C4—K2iv174.0 (2)
O2iv—K2—O588.23 (9)N1—C5—P1118.3 (2)
O3iii—K2—O5105.91 (9)N1—C5—H5B107.7
O2iv—K2—O6iv78.25 (9)P1—C5—H5B107.7
O3iii—K2—O6iv76.29 (9)N1—C5—H5A107.7
O5—K2—O6iv166.42 (9)P1—C5—H5A107.7
O2iv—K2—O1ix112.22 (8)H5B—C5—H5A107.1
O1i—Cu1—N1—C179.0 (13)K2iii—O2—K1—K2ii107.77 (9)
O1—Cu1—N1—C129.69 (19)C2—O2—K1—K2iii169.1 (3)
N1i—Cu1—N1—C1146.9 (2)K2ii—O2—K1—K2iii107.77 (9)
O3i—Cu1—N1—C164.3 (2)C2—O2—K1—K2xi33.3 (3)
O3—Cu1—N1—C1122.1 (2)K2iii—O2—K1—K2xi135.71 (8)
O1i—Cu1—N1—C338.0 (13)K2ii—O2—K1—K2xi116.52 (6)
O1—Cu1—N1—C387.3 (2)P1—O5—K2—O2iv179.09 (18)
N1i—Cu1—N1—C396.1 (2)P1—O5—K2—O3iii78.01 (19)
O3i—Cu1—N1—C3178.8 (2)P1—O5—K2—O6iv175.5 (3)
O3—Cu1—N1—C35.2 (2)P1—O5—K2—O1ix66.90 (19)
O1i—Cu1—N1—C5164.5 (12)P1—O5—K2—O4iii39.62 (17)
O1—Cu1—N1—C5146.2 (2)P1—O5—K2—O2ix29.5 (2)
N1i—Cu1—N1—C530.36 (16)P1—O5—K2—C2ix54.0 (2)
O3i—Cu1—N1—C552.3 (2)P1—O5—K2—C4iii58.02 (19)
O3—Cu1—N1—C5121.3 (2)P1—O5—K2—K1ix1.13 (17)
O1i—Cu1—O1—C2162.8 (3)P1—O5—K2—K1iv170.04 (14)
N1—Cu1—O1—C220.8 (2)P1—O5—K2—K2xii7.4 (3)
N1i—Cu1—O1—C2113.9 (12)K2—O5—P1—O5i60.87 (14)
O3i—Cu1—O1—C271.1 (2)K2—O5—P1—C5i176.51 (17)
O3—Cu1—O1—C2102.8 (2)K2—O5—P1—C559.7 (2)
O1i—Cu1—O1—K2ii62.18 (14)C3—N1—C1—C279.8 (4)
N1—Cu1—O1—K2ii114.25 (17)C5—N1—C1—C2154.1 (3)
N1i—Cu1—O1—K2ii111.0 (12)Cu1—N1—C1—C235.8 (3)
O3i—Cu1—O1—K2ii153.86 (17)K2iii—O2—C2—O1144.8 (3)
O3—Cu1—O1—K2ii32.26 (16)K1—O2—C2—O151.4 (4)
O1i—Cu1—O3—C4161.4 (2)K2ii—O2—C2—O131.6 (3)
O1—Cu1—O3—C465.9 (2)K2iii—O2—C2—C137.7 (5)
N1—Cu1—O3—C415.4 (2)K1—O2—C2—C1126.1 (3)
N1i—Cu1—O3—C4116.9 (2)K2ii—O2—C2—C1150.9 (3)
O3i—Cu1—O3—C466.4 (2)K2iii—O2—C2—K2ii113.2 (3)
O1i—Cu1—O3—K2iv19.87 (17)K1—O2—C2—K2ii83.01 (17)
O1—Cu1—O3—K2iv75.59 (17)Cu1—O1—C2—O2172.6 (3)
N1—Cu1—O3—K2iv156.91 (18)K2ii—O1—C2—O234.9 (3)
N1i—Cu1—O3—K2iv101.60 (17)Cu1—O1—C2—C15.0 (4)
O3i—Cu1—O3—K2iv152.06 (16)K2ii—O1—C2—C1147.5 (3)
K2iii—O6—K1—O4vi175.67 (8)Cu1—O1—C2—K2ii152.51 (19)
K2iii—O6—K1—O4vii77.75 (11)N1—C1—C2—O2159.6 (3)
K2iii—O6—K1—O6viii50.96 (7)N1—C1—C2—O122.7 (4)
K2iii—O6—K1—O212.40 (8)N1—C1—C2—K2ii53.8 (6)
K2iii—O6—K1—O2viii89.18 (10)C1—N1—C3—C4108.3 (3)
K2iii—O6—K1—K2x140.16 (9)C5—N1—C3—C4128.6 (3)
K2iii—O6—K1—K2ii30.77 (9)Cu1—N1—C3—C43.6 (3)
K2iii—O6—K1—K2xi86.76 (10)K1v—O4—C4—O392.5 (5)
C2—O2—K1—O4vi40.5 (5)K2iv—O4—C4—O34.6 (3)
K2iii—O2—K1—O4vi128.5 (3)K1v—O4—C4—C389.3 (4)
K2ii—O2—K1—O4vi123.7 (3)K2iv—O4—C4—C3177.2 (2)
C2—O2—K1—O4vii116.5 (3)K1v—O4—C4—K2iv87.9 (3)
K2iii—O2—K1—O4vii74.40 (9)Cu1—O3—C4—O4159.7 (3)
K2ii—O2—K1—O4vii33.37 (7)K2iv—O3—C4—O45.2 (4)
C2—O2—K1—O6156.3 (3)Cu1—O3—C4—C322.1 (3)
K2iii—O2—K1—O612.74 (9)K2iv—O3—C4—C3176.7 (2)
K2ii—O2—K1—O6120.52 (9)Cu1—O3—C4—K2iv154.5 (2)
C2—O2—K1—O6viii7.7 (3)N1—C3—C4—O4163.9 (3)
K2iii—O2—K1—O6viii176.70 (10)N1—C3—C4—O317.8 (4)
K2ii—O2—K1—O6viii75.52 (8)N1—C3—C4—K2iv10 (2)
C2—O2—K1—O2viii72.7 (3)C1—N1—C5—P1176.6 (2)
K2iii—O2—K1—O2viii96.30 (12)C3—N1—C5—P159.6 (3)
K2ii—O2—K1—O2viii155.92 (11)Cu1—N1—C5—P163.8 (3)
C2—O2—K1—K2x94.2 (3)O5—P1—C5—N178.5 (3)
K2iii—O2—K1—K2x74.84 (9)O5i—P1—C5—N1153.3 (2)
K2ii—O2—K1—K2x177.388 (15)C5i—P1—C5—N136.14 (18)
C2—O2—K1—K2ii83.2 (3)
Symmetry codes: (i) −x+1, −y, z; (ii) x, y, z−1; (iii) −x+3/2, y+1/2, −z+1; (iv) −x+3/2, y−1/2, −z+1; (v) −x+3/2, y−1/2, −z; (vi) x−1/2, −y+1/2, −z; (vii) −x+3/2, y+1/2, −z; (viii) −x+1, −y+1, z; (ix) x, y, z+1; (x) −x+1, −y+1, z−1; (xi) x−1/2, −y+1/2, −z+1; (xii) −x+3/2, y+1/2, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5xiii0.93 (2)1.75 (4)2.682 (4)173 (4)
O6—H6B···O1viii0.94 (2)2.02 (5)2.860 (4)148 (4)
Symmetry codes: (xiii) x, y+1, z−1; (viii) −x+1, −y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5i0.93 (2)1.75 (4)2.682 (4)173 (4)
O6—H6B···O1ii0.94 (2)2.02 (5)2.860 (4)148 (4)
Symmetry codes: (i) x, y+1, z−1; (ii) −x+1, −y+1, z.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (grant Nos. 20971062 and 21171081).

references
References top

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tircsó, G., Bényei, A., Király, R., Lázár, I., Pál, R. & Brücher, E. (2007). Eur. J. Inorg. Chem. pp. 701–713.

Varga, T. R. (1997). Synth. Commun. 27, 2899–2903.

Xu, L., Rettig, S. J. & Orvig, C. (2001). Inorg. Chem. 40, 3734–3738.