supplementary materials


cv5216 scheme

Acta Cryst. (2012). E68, o160    [ doi:10.1107/S1600536811053645 ]

(E)-N'-[(E)-3-Phenylallylidene]benzohydrazide

G.-M. Deng, Z. Chen, C.-R. Wang and H.-M. Zhang

Abstract top

In the title molecule, C16H14N2O, the dihedral angle between the two phenyl rings is 23.5 (6)°. In the crystal, N-H-O hydrogen bonds link molecules into chains running along the a axis.

Comment top

Schiff bases have attracted much attention due to their various activities in pharmaceutical and agrochemical fields (Bernardino et al., 2006; Zhang et al., 2008). We now report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the Schiff base molecule adopts an E geometry with respect to the C=N bond. All bond lengths and angles are normal and comparable with those found in the related compounds (Ji et al., 2008; He et al.., 2005; Zhen et al., 2005; Zhang et al.., 2007). The dihedral angle between the two benzene rings is 23.5 (6)°.

In the crystal structure, intermolecular N—H—O hydrogen bonds (Table 1) link molecules into chains running along the a axis (Fig. 2).

Related literature top

For general background to the applications of Schiff bases in the pharmaceutical and agrochemical fields, see: Bernardino et al. (2006); Zhang et al. (2008). For related structures, see: Ji & Shi (2008); He & Liu (2005); Zhen & Han (2005); Zhang et al. (2007).

Experimental top

The title compound was synthesized by the reaction of benzoylhydrazine (1 mmol, 136.2 mg) with 3-phenyl-propenal (1 mmol, 132.2 mg) in ethanol (20 ml) under reflux conditions (348 K) for 6 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After two days yellow crystals suitable for X-ray diffraction study were obtained. Yield, 222.7 mg, 83%. Analysis calculated for C16H14N2O: C 76.78, H 5.64, N 11.19%; found: C 76.73, H 5.61, N 11.21%.

Refinement top

The H1A atom bonded to N1 was located in a difference map and refined isotropically, other H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms,C—H=0.93, with Uiso(H)=1.2Ueq(C). In the absence of any significant anomalous scatterers in the molecule, the 1215 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the packing, viewed down the a axis. The dashed lines represent the intermolecular hydrogen bonds.
(E)-N'-[(E)-3-Phenylallylidene]benzohydrazide top
Crystal data top
C16H14N2OF(000) = 528.0
Mr = 250.29Dx = 1.202 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 968 reflections
a = 8.427 (3) Åθ = 0.5–3.2°
b = 10.439 (4) ŵ = 0.08 mm1
c = 15.724 (6) ÅT = 296 K
V = 1383.2 (9) Å3Block, yellow
Z = 40.16 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1361 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
graphiteθmax = 28.2°, θmin = 2.3°
phi and ω scansh = 1111
6868 measured reflectionsk = 1213
1761 independent reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
1761 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.09 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C16H14N2OV = 1383.2 (9) Å3
Mr = 250.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.427 (3) ŵ = 0.08 mm1
b = 10.439 (4) ÅT = 296 K
c = 15.724 (6) Å0.16 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1361 reflections with I > 2σ(I)
6868 measured reflectionsRint = 0.040
1761 independent reflectionsθmax = 28.2°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.09 e Å3
S = 1.01Δρmin = 0.12 e Å3
1761 reflectionsAbsolute structure: ?
176 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0668 (3)0.6483 (2)0.48249 (16)0.0652 (6)
C20.9616 (3)0.7307 (2)0.44374 (17)0.0759 (7)
H20.92520.80270.47270.091*
C30.9099 (3)0.7064 (3)0.36146 (18)0.0946 (9)
H30.83730.76120.33570.114*
C40.9659 (4)0.6012 (4)0.3178 (2)0.0980 (9)
H40.93080.58510.26280.118*
C51.0721 (4)0.5212 (3)0.3549 (2)0.0919 (8)
H51.11070.45080.32510.110*
C61.1229 (3)0.5441 (3)0.4371 (2)0.0832 (7)
H61.19570.48890.46220.100*
C71.1258 (3)0.6639 (2)0.57099 (17)0.0686 (6)
C80.9802 (3)0.8064 (2)0.75525 (16)0.0697 (7)
H80.89370.84690.73020.084*
C91.0068 (3)0.8183 (2)0.84500 (16)0.0689 (7)
H91.09720.78080.86800.083*
C100.9088 (3)0.8803 (2)0.89690 (17)0.0720 (7)
H100.82520.92350.87100.086*
C110.9157 (3)0.8892 (2)0.98938 (17)0.0670 (6)
C121.0264 (3)0.8252 (3)1.03800 (18)0.0859 (8)
H121.10260.77501.01120.103*
C131.0268 (4)0.8341 (3)1.1250 (2)0.1066 (10)
H131.10250.78991.15650.128*
C140.9169 (5)0.9073 (3)1.1655 (2)0.1060 (11)
H140.91700.91301.22450.127*
C150.8062 (4)0.9724 (3)1.1190 (2)0.1051 (11)
H150.73151.02331.14650.126*
C160.8049 (3)0.9630 (2)1.03158 (18)0.0849 (8)
H160.72841.00701.00060.102*
H1A0.938 (3)0.761 (2)0.6107 (14)0.062 (7)*
N11.0322 (3)0.7305 (2)0.62472 (13)0.0713 (6)
N21.0757 (2)0.7398 (2)0.70954 (13)0.0714 (6)
O11.25170 (19)0.61572 (17)0.59406 (13)0.0867 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0605 (13)0.0711 (14)0.0640 (16)0.0100 (13)0.0033 (13)0.0047 (13)
C20.0778 (15)0.0902 (17)0.0597 (16)0.0012 (13)0.0077 (16)0.0089 (15)
C30.094 (2)0.125 (2)0.064 (2)0.0053 (19)0.0004 (17)0.0212 (19)
C40.108 (2)0.125 (2)0.0611 (19)0.021 (2)0.0000 (18)0.0016 (19)
C50.107 (2)0.0881 (18)0.080 (2)0.0092 (18)0.0003 (17)0.0115 (18)
C60.0847 (16)0.0818 (16)0.083 (2)0.0035 (14)0.0061 (17)0.0025 (16)
C70.0635 (14)0.0725 (15)0.0697 (18)0.0098 (13)0.0013 (14)0.0004 (14)
C80.0603 (14)0.0779 (17)0.0708 (18)0.0045 (13)0.0098 (14)0.0068 (14)
C90.0631 (14)0.0798 (17)0.0639 (17)0.0003 (13)0.0082 (13)0.0039 (13)
C100.0632 (15)0.0773 (16)0.0756 (18)0.0023 (14)0.0107 (14)0.0051 (14)
C110.0671 (14)0.0620 (13)0.0718 (18)0.0046 (13)0.0022 (15)0.0013 (12)
C120.0867 (18)0.0919 (18)0.079 (2)0.0115 (17)0.0065 (16)0.0057 (18)
C130.139 (3)0.106 (2)0.075 (2)0.012 (2)0.015 (2)0.011 (2)
C140.166 (3)0.0823 (19)0.069 (2)0.018 (2)0.009 (2)0.0045 (17)
C150.138 (3)0.081 (2)0.097 (3)0.000 (2)0.030 (2)0.0086 (18)
C160.0878 (19)0.0784 (16)0.088 (2)0.0029 (16)0.0050 (16)0.0050 (15)
N10.0655 (13)0.0850 (15)0.0634 (15)0.0003 (12)0.0073 (13)0.0041 (12)
N20.0702 (12)0.0839 (13)0.0601 (14)0.0021 (11)0.0045 (11)0.0042 (10)
O10.0694 (10)0.1060 (12)0.0847 (13)0.0098 (10)0.0118 (10)0.0070 (10)
Geometric parameters (Å, °) top
C1—C21.378 (3)C9—C101.330 (3)
C1—C61.384 (3)C9—H90.9300
C1—C71.486 (3)C10—C111.458 (3)
C2—C31.389 (4)C10—H100.9300
C2—H20.9300C11—C121.379 (4)
C3—C41.378 (4)C11—C161.380 (4)
C3—H30.9300C12—C131.371 (4)
C4—C51.356 (4)C12—H120.9300
C4—H40.9300C13—C141.359 (5)
C5—C61.382 (4)C13—H130.9300
C5—H50.9300C14—C151.366 (4)
C6—H60.9300C14—H140.9300
C7—O11.229 (3)C15—C161.378 (4)
C7—N11.349 (3)C15—H150.9300
C8—N21.284 (3)C16—H160.9300
C8—C91.434 (3)N1—N21.386 (3)
C8—H80.9300N1—H1A0.88 (2)
C2—C1—C6118.9 (3)C8—C9—H9118.4
C2—C1—C7124.1 (2)C9—C10—C11128.2 (2)
C6—C1—C7117.0 (2)C9—C10—H10115.9
C1—C2—C3120.0 (3)C11—C10—H10115.9
C1—C2—H2120.0C12—C11—C16117.5 (3)
C3—C2—H2120.0C12—C11—C10123.3 (3)
C4—C3—C2120.2 (3)C16—C11—C10119.2 (3)
C4—C3—H3119.9C13—C12—C11121.5 (3)
C2—C3—H3119.9C13—C12—H12119.3
C5—C4—C3120.2 (3)C11—C12—H12119.3
C5—C4—H4119.9C14—C13—C12120.2 (3)
C3—C4—H4119.9C14—C13—H13119.9
C4—C5—C6120.0 (3)C12—C13—H13119.9
C4—C5—H5120.0C13—C14—C15119.7 (3)
C6—C5—H5120.0C13—C14—H14120.2
C5—C6—C1120.8 (3)C15—C14—H14120.2
C5—C6—H6119.6C14—C15—C16120.2 (3)
C1—C6—H6119.6C14—C15—H15119.9
O1—C7—N1122.1 (2)C16—C15—H15119.9
O1—C7—C1121.3 (2)C15—C16—C11120.9 (3)
N1—C7—C1116.6 (2)C15—C16—H16119.5
N2—C8—C9120.0 (2)C11—C16—H16119.5
N2—C8—H8120.0C7—N1—N2119.0 (2)
C9—C8—H8120.0C7—N1—H1A123.6 (15)
C10—C9—C8123.3 (2)N2—N1—H1A116.9 (15)
C10—C9—H9118.4C8—N2—N1114.3 (2)
C6—C1—C2—C32.0 (3)C9—C10—C11—C123.7 (4)
C7—C1—C2—C3178.3 (2)C9—C10—C11—C16177.5 (2)
C1—C2—C3—C41.2 (4)C16—C11—C12—C130.2 (4)
C2—C3—C4—C50.2 (4)C10—C11—C12—C13178.7 (3)
C3—C4—C5—C60.8 (4)C11—C12—C13—C140.2 (5)
C4—C5—C6—C10.0 (4)C12—C13—C14—C150.2 (5)
C2—C1—C6—C51.4 (3)C13—C14—C15—C160.7 (5)
C7—C1—C6—C5178.8 (2)C14—C15—C16—C110.7 (5)
C2—C1—C7—O1156.8 (2)C12—C11—C16—C150.3 (4)
C6—C1—C7—O123.0 (3)C10—C11—C16—C15179.1 (2)
C2—C1—C7—N124.8 (3)O1—C7—N1—N23.2 (3)
C6—C1—C7—N1155.5 (2)C1—C7—N1—N2175.23 (19)
N2—C8—C9—C10176.6 (2)C9—C8—N2—N1176.9 (2)
C8—C9—C10—C11174.1 (2)C7—N1—N2—C8179.2 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (2)2.05 (2)2.898 (3)161 (2)
Symmetry codes: (i) x−1/2, −y+3/2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (2)2.05 (2)2.898 (3)161 (2)
Symmetry codes: (i) x−1/2, −y+3/2, z.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (30940094) and the Science Foundation for Excellent Youth Scholars of the Education Commission of Hunan Province, China (10B077).

references
References top

Bernardino, A. M. R., Gomes, A. O., Charret, K. S., Freita, A. C. C., Machado, G. M. C., Canto-Cavalheiro, M. M., Leon, L. L. & Amaral, V. F. (2006). Eur. J. Med. Chem. 41, 80–87.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

He, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855–o3856.

Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.

Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.

Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.