supplementary materials


ez2275 scheme

Acta Cryst. (2012). E68, m41-m42    [ doi:10.1107/S1600536811052688 ]

Pentaaqua(5-carboxypyridine-2-carboxylato-[kappa]2N,O2)(pyridine-2,5-dicarboxylato-[kappa]2N,O2)cerium(III) tetrahydrate

N. Ma, T. Zhang and G.-R. Yang

Abstract top

In the title compound, [Ce(C7H3NO4)(C7H4NO4)(H2O)5]·4H2O, the Ce3+ ion is nine-coordinated by two O atoms and two N atoms from one single and from one double deprotonated pyridine-2,5-dicarboxylate ligand and five water molecules in a distorted monocapped square-antiprismatic geometry. In the crystal, extensive O-H...O hydrogen-bonding interactions result in a three-dimensional supramolecular architecture.

Comment top

The design and synthesis of luminescent lanthanide complexes have been attracting chemists' interest, because of their interesting photophysical properties and their potential application in sensors, optical fiber lasers and amplifiers, luminescent labels for biomolecular interactions, and as electroluminescent materials (Faulkner & Pope, 2003). During the past years, lots of such lanthanide compounds based on multifunctional carboxylic acid ligands have been reported (Cao et al., 2002). Herein, we report the title compound (I).

The title complex, Ce(C7H4NO4)(C7H3NO4)(H2O)5.4(H2O), presents a mononuclear molecular structure, which contains a Ce(C7H4NO4)(C7H3NO4)(H2O)5 molecule and four water molecules (Fig.1), and which is isostructural with its europium analogue (Song et al., 2005). In the molecular structure, the Ce atom resides in a distorted square antiprism geometry, which is defined by two oxygen atoms and two nitrogen atoms from two 2,5-pyridinedicarboxylate ligands and five water molecules. Two oxygen atoms from the two 2,5-pyridinedicarboxylate anions have bond distances of 2.4566 (18) Å [Ce(1)–O(1)] and 2.5098 (18) Å [Ce(1)–O(5)]. Two pyridine nitrogen atoms from the two dinic molecules have bond distances of 2.710 (2) Å [Ce(1)–N(1)] and 2.695 (2) Å [Ce(1)–N(2)]. Five oxygen atoms of the coordinated water molecules have Ce–O distances ranging from 2.449 (2) to 2.573 (2) Å. There are two 2,5-pyridinedicarboxylate anions per molecular unit: one is dianionic and the other must be monoprotonated to maintain electroneutrality.

In addition, the presence of many water molecules in the complex leads to numerous O—H···O hydrogen-bonding interactions including intra- and inter- hydrogen bonds (Fig.2, Table 1), which consolidate a stacked arrangement resulting in a three-dimensional supramolecular architecture.

Related literature top

For luminescent lanthanide complexes, see: Faulkner & Pope (2003). For carboxylic complexes of lanthanides, see: Cao et al. (2002). For a related europium structure, see: Song et al. (2005).

Experimental top

All reagents were commercially available and of analytical grade. The mixture of Ce(NO3)3.6H2O (0.25 mmol, 0.109 g) and 2,5-pyridinedicarboxylic acid (0.5 mmol, 0.084 g) was dissolved in 20 ml H2O, and the mixture was adjusted to pH = 4.5 using NaOH solution. The mixture was stirred and refluxed at 80 °C for one hour. The resulting solution was filtered and the filtrate evaporated at room temperature. Two weeks later, colorless block crystals of (I) were obtained.

Refinement top

The H atoms bonded to water were located in a difference synthesis and refined with distance restraints of O—H = 0.83 (1) Å and H···H = 1.37 (2) Å. The hydroxy H atom (H7) was located in a difference Fourier map and refined with an O—H distance of 0.82 (1) Å. All the remaining H atoms were positioned geometrically, with C—H = 0.93 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional structure of (I) by means of hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
Pentaaqua(5-carboxypyridine-2-carboxylato-κ2N,O2)(pyridine- 2,5-dicarboxylato-κ2N,O2)cerium(III) tetrahydrate top
Crystal data top
[Ce(C7H3NO4)(C7H4NO4)(H2O)5]·4H2OF(000) = 2536
Mr = 633.48Dx = 1.863 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2168 reflections
a = 14.0652 (10) Åθ = 2.6–22.7°
b = 9.6485 (7) ŵ = 2.10 mm1
c = 33.345 (2) ÅT = 296 K
β = 93.650 (1)°Block, colorless
V = 4516.0 (6) Å30.36 × 0.24 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3961 independent reflections
Radiation source: fine-focus sealed tube3705 reflections with I > 2σ(I)
graphiteRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1612
Tmin = 0.518, Tmax = 0.716k = 1111
11155 measured reflectionsl = 3839
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0224P)2 + 6.9052P]
where P = (Fo2 + 2Fc2)/3
3961 reflections(Δ/σ)max = 0.002
383 parametersΔρmax = 0.45 e Å3
28 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ce(C7H3NO4)(C7H4NO4)(H2O)5]·4H2OV = 4516.0 (6) Å3
Mr = 633.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.0652 (10) ŵ = 2.10 mm1
b = 9.6485 (7) ÅT = 296 K
c = 33.345 (2) Å0.36 × 0.24 × 0.17 mm
β = 93.650 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3961 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3705 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.716Rint = 0.019
11155 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050Δρmax = 0.45 e Å3
S = 1.07Δρmin = 0.50 e Å3
3961 reflectionsAbsolute structure: ?
383 parametersFlack parameter: ?
28 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.894634 (10)0.318396 (14)0.381434 (4)0.01818 (6)
O10.97858 (13)0.54167 (19)0.38596 (5)0.0277 (4)
O21.07372 (15)0.70191 (18)0.41446 (6)0.0304 (4)
O31.10159 (16)0.0673 (2)0.53150 (6)0.0372 (5)
O41.17536 (16)0.2284 (2)0.56975 (6)0.0370 (5)
O50.88653 (14)0.15016 (18)0.32391 (5)0.0285 (4)
O60.87079 (16)0.08997 (19)0.25957 (5)0.0357 (5)
O70.88037 (18)0.8380 (2)0.27999 (6)0.0374 (5)
O80.85018 (17)0.79869 (19)0.21507 (6)0.0385 (5)
N11.02240 (15)0.3588 (2)0.44467 (6)0.0211 (5)
N20.87500 (15)0.4203 (2)0.30610 (6)0.0212 (5)
C11.04597 (19)0.2665 (3)0.47348 (8)0.0235 (6)
H1A1.01590.18050.47240.028*
C21.11345 (19)0.2927 (3)0.50507 (8)0.0229 (6)
C31.1603 (2)0.4173 (3)0.50519 (8)0.0295 (6)
H3A1.20680.43750.52540.035*
C41.1381 (2)0.5126 (3)0.47515 (8)0.0300 (6)
H4A1.17020.59680.47460.036*
C51.06761 (18)0.4811 (3)0.44591 (7)0.0202 (5)
C61.1322 (2)0.1883 (3)0.53826 (8)0.0253 (6)
C71.03803 (18)0.5827 (3)0.41309 (7)0.0219 (6)
C80.87469 (19)0.3296 (3)0.27554 (8)0.0209 (5)
C90.8724 (2)0.3706 (3)0.23619 (8)0.0307 (7)
H9A0.87220.30520.21570.037*
C100.8705 (2)0.5100 (3)0.22733 (8)0.0316 (7)
H10A0.86910.53990.20080.038*
C110.87054 (19)0.6052 (3)0.25841 (8)0.0231 (6)
C120.87281 (18)0.5545 (3)0.29736 (7)0.0228 (6)
H12A0.87280.61770.31840.027*
C130.87783 (19)0.1775 (3)0.28743 (8)0.0222 (6)
C140.86649 (19)0.7566 (3)0.24921 (8)0.0237 (6)
O1W0.92616 (16)0.0802 (2)0.40398 (6)0.0348 (5)
H1WA0.939 (2)0.024 (2)0.3864 (6)0.039 (10)*
H1WB0.911 (2)0.037 (3)0.4241 (6)0.049 (10)*
O2W0.81108 (15)0.2775 (2)0.44579 (6)0.0351 (5)
H2WA0.7607 (14)0.313 (3)0.4527 (9)0.048 (11)*
H2WB0.837 (2)0.235 (4)0.4650 (8)0.074 (14)*
O3W0.78056 (16)0.5204 (2)0.38981 (7)0.0369 (5)
H3WA0.7345 (15)0.528 (3)0.3730 (7)0.041 (10)*
H3WB0.796 (2)0.5992 (18)0.3977 (10)0.060 (12)*
O4W1.05648 (15)0.2898 (2)0.35667 (7)0.0334 (5)
H4WA1.076 (2)0.2140 (18)0.3486 (10)0.042 (10)*
H4WB1.1030 (15)0.339 (3)0.3637 (11)0.052 (11)*
O5W0.72275 (14)0.2396 (2)0.36277 (6)0.0329 (5)
H5WA0.6985 (19)0.254 (4)0.3399 (4)0.044 (10)*
H5WB0.6823 (18)0.240 (4)0.3798 (7)0.056 (12)*
O6W0.64591 (16)0.3678 (3)0.47916 (7)0.0428 (5)
H6WA0.611 (2)0.333 (3)0.4610 (9)0.065 (13)*
H6WB0.626 (3)0.444 (2)0.4860 (13)0.099 (18)*
O7W0.62864 (17)0.5498 (2)0.33125 (8)0.0420 (5)
H7WA0.5957 (19)0.486 (2)0.3394 (8)0.034 (10)*
H7WB0.639 (3)0.539 (4)0.3073 (5)0.104 (19)*
O8W0.99039 (18)0.1264 (2)0.35587 (7)0.0412 (5)
H8WA1.001 (3)0.192 (2)0.3712 (9)0.061 (13)*
H8WB0.948 (2)0.143 (3)0.3385 (8)0.060 (13)*
O9W1.22355 (19)0.4211 (3)0.37170 (9)0.0614 (8)
H9WA1.253 (2)0.387 (3)0.3916 (7)0.057 (12)*
H9WB1.242 (3)0.5001 (19)0.3673 (11)0.076 (15)*
H70.872 (3)0.9185 (19)0.2726 (13)0.092 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.02396 (9)0.01492 (9)0.01536 (9)0.00190 (6)0.00097 (6)0.00118 (6)
O10.0359 (11)0.0211 (9)0.0247 (10)0.0035 (8)0.0088 (8)0.0039 (8)
O20.0415 (12)0.0176 (10)0.0313 (11)0.0075 (8)0.0046 (9)0.0043 (8)
O30.0661 (15)0.0216 (11)0.0231 (10)0.0080 (10)0.0039 (10)0.0027 (8)
O40.0574 (14)0.0276 (11)0.0237 (11)0.0007 (10)0.0157 (10)0.0027 (9)
O50.0482 (12)0.0171 (9)0.0197 (10)0.0011 (8)0.0015 (9)0.0011 (8)
O60.0706 (15)0.0152 (9)0.0207 (10)0.0017 (9)0.0025 (10)0.0026 (8)
O70.0731 (16)0.0152 (10)0.0222 (11)0.0016 (10)0.0101 (10)0.0005 (9)
O80.0713 (16)0.0210 (11)0.0220 (11)0.0018 (10)0.0055 (10)0.0049 (8)
N10.0262 (12)0.0199 (11)0.0167 (11)0.0053 (9)0.0028 (9)0.0024 (9)
N20.0299 (12)0.0148 (11)0.0186 (11)0.0009 (9)0.0013 (9)0.0001 (9)
C10.0297 (15)0.0191 (13)0.0212 (13)0.0062 (11)0.0021 (11)0.0022 (11)
C20.0283 (14)0.0203 (13)0.0202 (13)0.0014 (11)0.0015 (11)0.0005 (11)
C30.0358 (16)0.0270 (15)0.0242 (14)0.0074 (12)0.0102 (12)0.0016 (12)
C40.0383 (16)0.0230 (15)0.0276 (15)0.0116 (12)0.0059 (12)0.0025 (12)
C50.0251 (13)0.0184 (13)0.0171 (13)0.0015 (10)0.0011 (10)0.0012 (10)
C60.0333 (15)0.0220 (14)0.0205 (14)0.0038 (12)0.0018 (12)0.0008 (11)
C70.0264 (14)0.0200 (14)0.0194 (13)0.0008 (11)0.0027 (11)0.0010 (11)
C80.0256 (14)0.0166 (13)0.0205 (13)0.0003 (10)0.0002 (11)0.0011 (10)
C90.0567 (19)0.0186 (14)0.0170 (14)0.0001 (13)0.0035 (13)0.0031 (11)
C100.0559 (19)0.0238 (15)0.0150 (13)0.0010 (13)0.0005 (13)0.0034 (11)
C110.0299 (14)0.0178 (13)0.0215 (13)0.0015 (11)0.0003 (11)0.0020 (11)
C120.0338 (15)0.0164 (13)0.0179 (13)0.0007 (11)0.0006 (11)0.0029 (10)
C130.0273 (14)0.0163 (13)0.0227 (14)0.0012 (10)0.0001 (11)0.0001 (11)
C140.0291 (14)0.0213 (14)0.0203 (14)0.0008 (11)0.0022 (11)0.0008 (11)
O1W0.0619 (14)0.0211 (10)0.0218 (11)0.0011 (10)0.0059 (10)0.0045 (9)
O2W0.0323 (12)0.0480 (14)0.0254 (11)0.0050 (10)0.0057 (9)0.0072 (10)
O3W0.0375 (13)0.0286 (12)0.0431 (13)0.0053 (10)0.0086 (10)0.0091 (10)
O4W0.0310 (12)0.0286 (12)0.0412 (12)0.0020 (10)0.0078 (10)0.0096 (10)
O5W0.0303 (11)0.0440 (13)0.0238 (11)0.0048 (10)0.0025 (9)0.0030 (10)
O6W0.0406 (13)0.0395 (14)0.0476 (15)0.0021 (11)0.0033 (11)0.0162 (12)
O7W0.0461 (14)0.0355 (13)0.0439 (14)0.0044 (11)0.0002 (11)0.0143 (11)
O8W0.0617 (16)0.0291 (12)0.0316 (12)0.0064 (11)0.0068 (11)0.0066 (10)
O9W0.0550 (16)0.0467 (16)0.078 (2)0.0185 (13)0.0337 (14)0.0271 (15)
Geometric parameters (Å, °) top
Ce1—O1W2.4493 (19)C4—H4A0.9300
Ce1—O12.4566 (18)C5—C71.508 (4)
Ce1—O4W2.486 (2)C8—C91.369 (4)
Ce1—O52.5098 (18)C8—C131.520 (3)
Ce1—O2W2.542 (2)C9—C101.377 (4)
Ce1—O3W2.551 (2)C9—H9A0.9300
Ce1—O5W2.573 (2)C10—C111.384 (4)
Ce1—N22.695 (2)C10—H10A0.9300
Ce1—N12.710 (2)C11—C121.386 (4)
O1—C71.256 (3)C11—C141.493 (4)
O2—C71.254 (3)C12—H12A0.9300
O3—C61.259 (3)O1W—H1WA0.828 (10)
O4—C61.241 (3)O1W—H1WB0.830 (10)
O5—C131.243 (3)O2W—H2WA0.832 (10)
O6—C131.255 (3)O2W—H2WB0.829 (10)
O7—C141.297 (3)O3W—H3WA0.833 (10)
O7—H70.820 (10)O3W—H3WB0.831 (10)
O8—C141.217 (3)O4W—H4WA0.830 (10)
N1—C11.337 (3)O4W—H4WB0.828 (10)
N1—C51.340 (3)O5W—H5WA0.828 (10)
N2—C121.327 (3)O5W—H5WB0.829 (10)
N2—C81.343 (3)O6W—H6WA0.826 (10)
C1—C21.395 (4)O6W—H6WB0.827 (10)
C1—H1A0.9300O7W—H7WA0.825 (10)
C2—C31.370 (4)O7W—H7WB0.826 (10)
C2—C61.508 (4)O8W—H8WA0.824 (10)
C3—C41.381 (4)O8W—H8WB0.825 (10)
C3—H3A0.9300O9W—H9WA0.825 (10)
C4—C51.380 (4)O9W—H9WB0.821 (10)
O1W—Ce1—O1136.63 (7)C4—C3—H3A120.1
O1W—Ce1—O4W81.14 (7)C5—C4—C3119.0 (2)
O1—Ce1—O4W70.80 (7)C5—C4—H4A120.5
O1W—Ce1—O568.06 (6)C3—C4—H4A120.5
O1—Ce1—O5127.76 (6)N1—C5—C4122.3 (2)
O4W—Ce1—O570.87 (7)N1—C5—C7116.2 (2)
O1W—Ce1—O2W71.32 (7)C4—C5—C7121.5 (2)
O1—Ce1—O2W109.29 (7)O4—C6—O3125.8 (3)
O4W—Ce1—O2W138.20 (7)O4—C6—C2117.7 (2)
O5—Ce1—O2W122.95 (7)O3—C6—C2116.5 (2)
O1W—Ce1—O3W141.81 (7)O2—C7—O1124.2 (2)
O1—Ce1—O3W68.07 (7)O2—C7—C5118.6 (2)
O4W—Ce1—O3W135.80 (7)O1—C7—C5117.2 (2)
O5—Ce1—O3W125.42 (7)N2—C8—C9122.5 (2)
O2W—Ce1—O3W72.45 (7)N2—C8—C13115.6 (2)
O1W—Ce1—O5W86.90 (7)C9—C8—C13121.8 (2)
O1—Ce1—O5W135.61 (7)C8—C9—C10119.1 (2)
O4W—Ce1—O5W138.86 (7)C8—C9—H9A120.4
O5—Ce1—O5W68.15 (7)C10—C9—H9A120.4
O2W—Ce1—O5W71.37 (7)C9—C10—C11119.2 (2)
O3W—Ce1—O5W70.39 (7)C9—C10—H10A120.4
O1W—Ce1—N2129.35 (6)C11—C10—H10A120.4
O1—Ce1—N275.98 (6)C10—C11—C12117.8 (2)
O4W—Ce1—N276.86 (7)C10—C11—C14119.8 (2)
O5—Ce1—N261.75 (6)C12—C11—C14122.4 (2)
O2W—Ce1—N2144.87 (7)N2—C12—C11123.3 (2)
O3W—Ce1—N278.20 (7)N2—C12—H12A118.4
O5W—Ce1—N280.99 (6)C11—C12—H12A118.4
O1W—Ce1—N178.35 (7)O5—C13—O6125.5 (2)
O1—Ce1—N162.21 (6)O5—C13—C8117.3 (2)
O4W—Ce1—N172.46 (7)O6—C13—C8117.2 (2)
O5—Ce1—N1133.10 (7)O8—C14—O7123.3 (2)
O2W—Ce1—N171.63 (7)O8—C14—C11121.4 (2)
O3W—Ce1—N1101.26 (7)O7—C14—C11115.3 (2)
O5W—Ce1—N1142.85 (6)Ce1—O1W—H1WA116 (2)
N2—Ce1—N1134.12 (6)Ce1—O1W—H1WB132 (2)
C7—O1—Ce1128.03 (16)H1WA—O1W—H1WB108 (2)
C13—O5—Ce1127.41 (16)Ce1—O2W—H2WA128 (2)
C14—O7—H7109 (3)Ce1—O2W—H2WB122 (2)
C1—N1—C5118.0 (2)H2WA—O2W—H2WB109 (2)
C1—N1—Ce1125.81 (17)Ce1—O3W—H3WA117 (2)
C5—N1—Ce1116.15 (16)Ce1—O3W—H3WB125 (2)
C12—N2—C8118.1 (2)H3WA—O3W—H3WB109 (2)
C12—N2—Ce1124.06 (16)Ce1—O4W—H4WA122 (2)
C8—N2—Ce1117.68 (16)Ce1—O4W—H4WB124 (2)
N1—C1—C2123.2 (2)H4WA—O4W—H4WB109 (2)
N1—C1—H1A118.4Ce1—O5W—H5WA120 (2)
C2—C1—H1A118.4Ce1—O5W—H5WB121 (2)
C3—C2—C1117.7 (2)H5WA—O5W—H5WB112 (2)
C3—C2—C6121.5 (2)H6WA—O6W—H6WB112 (2)
C1—C2—C6120.8 (2)H7WA—O7W—H7WB111 (2)
C2—C3—C4119.7 (3)H8WA—O8W—H8WB112 (2)
C2—C3—H3A120.1H9WA—O9W—H9WB111 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8W0.83 (1)1.94 (1)2.747 (3)165 (3)
O1W—H1WB···O3i0.83 (1)1.81 (1)2.630 (3)170 (3)
O2W—H2WA···O6W0.83 (1)1.96 (1)2.779 (3)167 (3)
O2W—H2WB···O6Wii0.83 (1)2.11 (2)2.898 (3)159 (3)
O3W—H3WA···O7W0.83 (1)1.98 (1)2.816 (3)177 (3)
O3W—H3WB···O4iii0.83 (1)2.01 (1)2.823 (3)165 (4)
O4W—H4WA···O7Wiv0.83 (1)1.86 (1)2.687 (3)175 (3)
O4W—H4WB···O9W0.83 (1)1.88 (1)2.689 (3)166 (3)
O5W—H5WA···O8v0.83 (1)1.96 (1)2.789 (3)175 (3)
O5W—H5WB···O2vi0.83 (1)2.01 (1)2.821 (3)167 (4)
O6W—H6WA···O2vi0.83 (1)2.04 (2)2.823 (3)157 (3)
O6W—H6WB···O3vii0.83 (1)1.97 (3)2.698 (3)146 (4)
O7W—H7WA···O8Wvii0.83 (1)1.94 (1)2.747 (4)164 (3)
O7W—H7WB···O6viii0.83 (1)2.28 (2)3.054 (3)157 (5)
O7W—H7WB···O8v0.83 (1)2.45 (4)2.898 (3)115 (3)
O8W—H8WA···O2ix0.82 (1)2.00 (2)2.765 (3)155 (3)
O8W—H8WA···O1ix0.82 (1)2.64 (2)3.364 (3)148 (3)
O8W—H8WB···O7ix0.83 (1)2.12 (2)2.901 (3)158 (4)
O9W—H9WA···O4x0.83 (1)1.94 (1)2.750 (3)167 (4)
O9W—H9WB···O5Wxi0.82 (1)2.33 (2)3.087 (4)154 (4)
O7—H7···O6xii0.82 (1)1.71 (1)2.526 (3)173 (5)
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+3/2, −y−1/2, −z+1; (iii) −x+2, −y−1, −z+1; (iv) x+1/2, y+1/2, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) x−1/2, y+1/2, z; (vii) x−1/2, y−1/2, z; (viii) −x+3/2, y−1/2, −z+1/2; (ix) x, y+1, z; (x) −x+5/2, −y−1/2, −z+1; (xi) x+1/2, y−1/2, z; (xii) x, y−1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8W0.83 (1)1.94 (1)2.747 (3)165 (3)
O1W—H1WB···O3i0.83 (1)1.81 (1)2.630 (3)170 (3)
O2W—H2WA···O6W0.83 (1)1.96 (1)2.779 (3)167 (3)
O2W—H2WB···O6Wii0.83 (1)2.11 (2)2.898 (3)159 (3)
O3W—H3WA···O7W0.83 (1)1.98 (1)2.816 (3)177 (3)
O3W—H3WB···O4iii0.83 (1)2.01 (1)2.823 (3)165 (4)
O4W—H4WA···O7Wiv0.83 (1)1.86 (1)2.687 (3)175 (3)
O4W—H4WB···O9W0.83 (1)1.88 (1)2.689 (3)166 (3)
O5W—H5WA···O8v0.83 (1)1.96 (1)2.789 (3)175 (3)
O5W—H5WB···O2vi0.83 (1)2.01 (1)2.821 (3)167 (4)
O6W—H6WA···O2vi0.83 (1)2.04 (2)2.823 (3)157 (3)
O6W—H6WB···O3vii0.83 (1)1.97 (3)2.698 (3)146 (4)
O7W—H7WA···O8Wvii0.83 (1)1.94 (1)2.747 (4)164 (3)
O7W—H7WB···O6viii0.83 (1)2.28 (2)3.054 (3)157 (5)
O7W—H7WB···O8v0.83 (1)2.45 (4)2.898 (3)115 (3)
O8W—H8WA···O2ix0.82 (1)2.00 (2)2.765 (3)155 (3)
O8W—H8WA···O1ix0.82 (1)2.64 (2)3.364 (3)148 (3)
O8W—H8WB···O7ix0.83 (1)2.12 (2)2.901 (3)158 (4)
O9W—H9WA···O4x0.83 (1)1.94 (1)2.750 (3)167 (4)
O9W—H9WB···O5Wxi0.82 (1)2.33 (2)3.087 (4)154 (4)
O7—H7···O6xii0.82 (1)1.71 (1)2.526 (3)173 (5)
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+3/2, −y−1/2, −z+1; (iii) −x+2, −y−1, −z+1; (iv) x+1/2, y+1/2, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) x−1/2, y+1/2, z; (vii) x−1/2, y−1/2, z; (viii) −x+3/2, y−1/2, −z+1/2; (ix) x, y+1, z; (x) −x+5/2, −y−1/2, −z+1; (xi) x+1/2, y−1/2, z; (xii) x, y−1, z.
Acknowledgements top

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

references
References top

Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, R., Sun, D. F., Liang, Y. C., Hong, M. C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.

Faulkner, S. & Pope, S. A. P. (2003). J. Am. Chem. Soc. 125, 10526–10527.

Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, Y., Yan, B. & Chen, Z. (2005). J. Coord. Chem. 58, 811–816.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.