organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R)-4-Benzyl-3-{(4S)-4-chloro-4-[(S)-2,2-di­methyl-1,3-dioxolan-4-yl]butano­yl}-1,3-oxazolidin-2-one

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

(Received 28 November 2011; accepted 14 December 2011; online 17 December 2011)

The title compound, C19H24ClNO5, was synthesized and subsequently employed in an Evans alkyl­ation. The purpose was to prove the absolute configuration in the projected synthesis of the side chain of (–)-Lytophilippine A. The oxazolidinone and the isopropylidene acetal rings have twisted conformations. The oxazolidinone and side-chain carbonyl groups are orientated in an anti­periplanar arrangement to minimize van der Waals repulsions. Furthermore, the Cl atom and the acetonide-protected secondary alcohol are also in an anti­periplanar arrangement with a torsion angle of 173.64 (14)°. The absolute configuration was determined and agrees with the configuration of the used chiral auxiliary.

Related literature

For background to the synthesis, see: Gille & Hiersemann (2010[Gille, A. & Hiersemann, M. (2010). Org. Lett. 12, 5258-5261.]); Jang et al. (2011[Jang, K. P., Choi, S. Y., Chung, Y. K. & Lee, E. (2011). Org. Lett. 13, 2476-2479.]); Řezanka et al. (2004[Řezanka, T., Hanuš, L. O. & Dembitsky, V. M. (2004). Tetrahedron, 60, 12191-12199.]). For Evans alkyl­ation, see: Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.], 1982[Evans, D. A., Ennis, M. D. & Marthre, D. J. (1982). J. Am. Chem. Soc. 104, 1737-1739.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24ClNO5

  • Mr = 381.84

  • Monoclinic, P 21

  • a = 11.7552 (9) Å

  • b = 5.9139 (4) Å

  • c = 13.8789 (11) Å

  • β = 109.023 (9)°

  • V = 912.16 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.910, Tmax = 0.954

  • 6562 measured reflections

  • 3594 independent reflections

  • 2515 reflections with I > 2s(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.047

  • S = 0.98

  • 3594 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1198 Friedel pairs

  • Flack parameter: 0.11 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

The title compound I was obtained during the synthesis of the side chain of (–)-Lytophilippine A (Řezanka et al., 2004). Recently our research group published the synthesis of the core fragment of (–)-Lytophilippine A (Gille & Hiersemann, 2010). Shortly after, the first total synthesis of the postulated structure was published (Jang et al., 2011). Compound I was synthesized and subsequently applied in an Evans alkylation (Evans et al., 1981; Evans et al., 1982) to install the stereogenic center at C23. The synthesis of I was carried out from carboxylic acid and (R)-4-benzyloxazolidin-2-one.

The oxazolidinone ring adopts a nearly coplanar conformation and the isopropylidene acetal is an open envelope-like structure. The oxazolidinone- and side-chain carbonyl groups are orientated in an antiperiplanar arrangement to minimize van der Waals repulsions. The dihedral angle between the plane through N, C10, O2 and the plane through N, C11, O3 is 9.4 (4)°. Furthermore, the chlorine atom and the acetonide protected secondary alcohol are also in an antiperiplanar arrangement with an torsion angle of 173.64 (14)°. The absolute configuration was determined and agrees with the configuration of the used chiral auxiliary.

Related literature top

For background to the synthesis, see: Gille & Hiersemann (2010); Jang et al. (2011); Řezanka et al. (2004). For Evans alkylation, see: Evans et al. (1981, 1982).

Experimental top

To a solution of carboxylic acid (840 mg, 3.77 mmol, 1.0 eq) in THF (20 ml, 5 ml/mmol) was added Et3N (1.14 ml, 8.15 mmol, 2.0 eq) and pivaloylchloride (0.6 ml, 4.89 mmol, 1.2 eq) at 253 K. After stirring at this temperature for 2 h the mixture was warmed to 273 K. Solid LiCl (240 mg, 5.67 mmol, 1.5 eq) and (R)-4-benzyloxazolidin-2-one (669 mg, 3.77 mmol, 1.0 eq) were added. The reaction was quenched with H2O after stirring for 2 h at room temperature. The layers were separated and the aqueous phase extracted with Et2O. The combined organic phases were dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. Flash column chromatography (cyclohexane/ethyl acetate 5/1) afforded the title compound (1.12 g, 2.93 mmol, 84%) as a thick colourless oil. Single crystals of (I) were obtained by crystallization from isohexane to provide white needles. Rf 0.43 (cyclohexane/ethyl acetate 2/1); Anal. Calcd. for C19H24ClNO5: C,59.8; H, 6.3; N, 3.7; Found: C, 59.8; H, 6.5; N, 3.6; [α]D20 -51.4 (c 1.02, CH3Cl); M = 381.85 g/mol.

Refinement top

The hydrogen atoms were placed in calculated posions with C–H bond distances in the range from 0.95 to 1.00 Å and refined as riding on their parent atoms with Uiso = 1.2 or 1.5 x Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
(4R)-4-Benzyl-3-{(4S)-4-chloro-4-[(S)-2,2- dimethyl-1,3-dioxolan-4-yl]butanoyl}-1,3-oxazolidin-2-one top
Crystal data top
C19H24ClNO5F(000) = 404
Mr = 381.84Dx = 1.390 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2793 reflections
a = 11.7552 (9) Åθ = 2.8–29.0°
b = 5.9139 (4) ŵ = 0.24 mm1
c = 13.8789 (11) ÅT = 173 K
β = 109.023 (9)°Block, white
V = 912.16 (12) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3594 independent reflections
Radiation source: Enhance (Mo) X-ray Source2515 reflections with I > 2s(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.0560 pixels mm-1θmax = 26.0°, θmin = 2.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 77
Tmin = 0.910, Tmax = 0.954l = 1716
6562 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.007P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3594 reflectionsΔρmax = 0.22 e Å3
237 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1198 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (5)
Crystal data top
C19H24ClNO5V = 912.16 (12) Å3
Mr = 381.84Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.7552 (9) ŵ = 0.24 mm1
b = 5.9139 (4) ÅT = 173 K
c = 13.8789 (11) Å0.40 × 0.20 × 0.20 mm
β = 109.023 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2515 reflections with I > 2s(I)
Tmin = 0.910, Tmax = 0.954Rint = 0.033
6562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.047Δρmax = 0.22 e Å3
S = 0.98Δρmin = 0.21 e Å3
3594 reflectionsAbsolute structure: Flack (1983), 1198 Friedel pairs
237 parametersAbsolute structure parameter: 0.11 (5)
1 restraint
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2008), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1657 (2)0.3801 (4)0.17220 (18)0.0189 (6)
C20.0920 (2)0.2107 (4)0.18929 (18)0.0224 (7)
H20.12670.07270.22020.027*
C30.0317 (2)0.2418 (4)0.1616 (2)0.0290 (7)
H30.08100.12690.17500.035*
C40.0827 (2)0.4398 (4)0.11451 (19)0.0270 (7)
H40.16750.45980.09400.032*
C50.0110 (2)0.6085 (4)0.0972 (2)0.0285 (7)
H50.04590.74540.06530.034*
C60.1125 (2)0.5773 (4)0.12673 (19)0.0245 (7)
H60.16160.69510.11530.029*
C70.30014 (18)0.3420 (4)0.20129 (17)0.0201 (6)
H7A0.34250.48870.21850.024*
H7B0.32730.24390.26230.024*
C80.3321 (2)0.2315 (4)0.11426 (18)0.0191 (6)
H80.27960.09670.08850.023*
C90.3254 (2)0.3926 (4)0.02582 (19)0.0312 (7)
H9A0.27620.52720.02790.037*
H9B0.28960.31550.04050.037*
C100.5254 (2)0.3120 (5)0.10476 (17)0.0206 (6)
C110.4985 (2)0.0280 (4)0.20304 (19)0.0216 (6)
C120.6276 (2)0.0996 (4)0.2280 (2)0.0244 (7)
H12A0.63850.17730.16840.029*
H12B0.68000.03580.24300.029*
C130.6643 (2)0.2563 (4)0.31873 (19)0.0220 (7)
H13A0.67130.16700.38080.026*
H13B0.59950.36890.31060.026*
C140.7817 (2)0.3812 (4)0.33466 (19)0.0209 (6)
H140.77080.48610.27580.025*
C150.8252 (2)0.5187 (4)0.43295 (18)0.0209 (6)
H150.90580.58660.44130.025*
C160.8292 (2)0.3846 (4)0.52813 (18)0.0244 (6)
H16A0.84050.22120.51870.029*
H16B0.89490.43890.58860.029*
C170.6855 (2)0.6563 (4)0.50682 (18)0.0229 (6)
C180.55163 (18)0.6806 (5)0.46026 (17)0.0278 (6)
H18A0.52040.55950.41040.042*
H18B0.53280.82750.42610.042*
H18C0.51430.67060.51380.042*
C190.7398 (2)0.8166 (4)0.59485 (18)0.0272 (7)
H19A0.71550.77080.65310.041*
H19B0.71140.97060.57430.041*
H19C0.82770.81210.61410.041*
Cl0.90160 (5)0.18577 (11)0.33911 (5)0.03519 (19)
N0.46002 (17)0.1656 (3)0.14456 (15)0.0161 (5)
O10.44892 (15)0.4571 (3)0.04026 (13)0.0265 (4)
O20.63229 (13)0.3207 (3)0.12130 (12)0.0242 (4)
O30.42567 (14)0.1337 (3)0.22968 (13)0.0314 (5)
O40.71441 (14)0.4278 (2)0.53829 (13)0.0204 (4)
O50.73891 (12)0.6923 (3)0.42756 (11)0.0231 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (14)0.0224 (16)0.0130 (15)0.0011 (12)0.0049 (13)0.0024 (11)
C20.0283 (16)0.0211 (14)0.0183 (17)0.0020 (13)0.0085 (15)0.0011 (12)
C30.0288 (17)0.0318 (17)0.0305 (19)0.0072 (14)0.0151 (16)0.0004 (14)
C40.0206 (16)0.0364 (16)0.0244 (18)0.0029 (14)0.0079 (15)0.0005 (14)
C50.0306 (17)0.0216 (16)0.0353 (19)0.0098 (14)0.0132 (16)0.0060 (14)
C60.0290 (17)0.0195 (14)0.0296 (18)0.0021 (13)0.0158 (15)0.0014 (13)
C70.0225 (13)0.0186 (14)0.0183 (15)0.0005 (14)0.0054 (12)0.0032 (12)
C80.0156 (14)0.0228 (14)0.0176 (16)0.0021 (11)0.0038 (13)0.0029 (12)
C90.0176 (14)0.0477 (19)0.0294 (18)0.0047 (14)0.0094 (15)0.0112 (14)
C100.0278 (14)0.0202 (13)0.0131 (14)0.0007 (16)0.0058 (13)0.0073 (14)
C110.0259 (17)0.0204 (14)0.0168 (16)0.0011 (13)0.0046 (14)0.0036 (13)
C120.0197 (14)0.0233 (15)0.0334 (18)0.0028 (12)0.0132 (14)0.0045 (12)
C130.0198 (14)0.0239 (16)0.0230 (17)0.0007 (12)0.0078 (14)0.0014 (12)
C140.0198 (15)0.0208 (14)0.0239 (17)0.0079 (13)0.0097 (14)0.0060 (13)
C150.0176 (15)0.0202 (14)0.0242 (17)0.0038 (12)0.0058 (14)0.0033 (13)
C160.0222 (16)0.0280 (15)0.0205 (17)0.0031 (13)0.0033 (14)0.0005 (13)
C170.0277 (14)0.0224 (15)0.0215 (16)0.0027 (15)0.0122 (14)0.0001 (14)
C180.0277 (14)0.0233 (13)0.0337 (17)0.0015 (16)0.0116 (14)0.0011 (15)
C190.0309 (17)0.0260 (15)0.0279 (18)0.0057 (12)0.0140 (16)0.0055 (13)
Cl0.0234 (4)0.0399 (4)0.0430 (5)0.0074 (4)0.0119 (4)0.0058 (4)
N0.0116 (12)0.0175 (12)0.0205 (14)0.0006 (9)0.0070 (11)0.0043 (9)
O10.0241 (11)0.0301 (10)0.0254 (12)0.0011 (8)0.0083 (10)0.0127 (9)
O20.0193 (8)0.0274 (9)0.0273 (11)0.0067 (10)0.0096 (8)0.0029 (10)
O30.0252 (9)0.0262 (11)0.0473 (14)0.0023 (9)0.0182 (10)0.0133 (9)
O40.0215 (11)0.0197 (9)0.0234 (11)0.0000 (9)0.0120 (9)0.0040 (8)
O50.0296 (10)0.0209 (9)0.0241 (10)0.0017 (10)0.0158 (9)0.0022 (10)
Geometric parameters (Å, º) top
C1—C61.376 (3)C11—C121.503 (3)
C1—C21.394 (3)C12—C131.508 (3)
C1—C71.515 (3)C12—H12A0.9900
C2—C31.390 (3)C12—H12B0.9900
C2—H20.9500C13—C141.517 (3)
C3—C41.379 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.377 (3)C14—C151.526 (3)
C4—H40.9500C14—Cl1.808 (2)
C5—C61.386 (3)C14—H141.0000
C5—H50.9500C15—O51.428 (2)
C6—H60.9500C15—C161.528 (3)
C7—C81.524 (3)C15—H151.0000
C7—H7A0.9900C16—O41.425 (3)
C7—H7B0.9900C16—H16A0.9900
C8—N1.476 (3)C16—H16B0.9900
C8—C91.536 (3)C17—O41.426 (3)
C8—H81.0000C17—O51.449 (2)
C9—O11.450 (2)C17—C181.500 (3)
C9—H9A0.9900C17—C191.514 (3)
C9—H9B0.9900C18—H18A0.9800
C10—O21.202 (2)C18—H18B0.9800
C10—O11.350 (3)C18—H18C0.9800
C10—N1.386 (3)C19—H19A0.9800
C11—O31.211 (2)C19—H19B0.9800
C11—N1.391 (3)C19—H19C0.9800
C6—C1—C2118.2 (2)C12—C13—C14114.81 (19)
C6—C1—C7121.8 (2)C12—C13—H13A108.6
C2—C1—C7120.0 (2)C14—C13—H13A108.6
C3—C2—C1120.7 (2)C12—C13—H13B108.6
C3—C2—H2119.7C14—C13—H13B108.6
C1—C2—H2119.7H13A—C13—H13B107.5
C4—C3—C2119.8 (2)C13—C14—C15114.5 (2)
C4—C3—H3120.1C13—C14—Cl110.85 (15)
C2—C3—H3120.1C15—C14—Cl106.22 (17)
C5—C4—C3120.1 (3)C13—C14—H14108.4
C5—C4—H4120.0C15—C14—H14108.4
C3—C4—H4120.0Cl—C14—H14108.4
C4—C5—C6119.6 (2)O5—C15—C14108.09 (19)
C4—C5—H5120.2O5—C15—C16103.84 (17)
C6—C5—H5120.2C14—C15—C16113.78 (18)
C1—C6—C5121.6 (2)O5—C15—H15110.3
C1—C6—H6119.2C14—C15—H15110.3
C5—C6—H6119.2C16—C15—H15110.3
C1—C7—C8110.94 (19)O4—C16—C15103.26 (18)
C1—C7—H7A109.5O4—C16—H16A111.1
C8—C7—H7A109.5C15—C16—H16A111.1
C1—C7—H7B109.5O4—C16—H16B111.1
C8—C7—H7B109.5C15—C16—H16B111.1
H7A—C7—H7B108.0H16A—C16—H16B109.1
N—C8—C7112.25 (19)O4—C17—O5104.61 (18)
N—C8—C999.97 (18)O4—C17—C18109.5 (2)
C7—C8—C9113.96 (18)O5—C17—C18108.19 (19)
N—C8—H8110.1O4—C17—C19110.5 (2)
C7—C8—H8110.1O5—C17—C19110.32 (19)
C9—C8—H8110.1C18—C17—C19113.3 (2)
O1—C9—C8105.4 (2)C17—C18—H18A109.5
O1—C9—H9A110.7C17—C18—H18B109.5
C8—C9—H9A110.7H18A—C18—H18B109.5
O1—C9—H9B110.7C17—C18—H18C109.5
C8—C9—H9B110.7H18A—C18—H18C109.5
H9A—C9—H9B108.8H18B—C18—H18C109.5
O2—C10—O1121.9 (3)C17—C19—H19A109.5
O2—C10—N129.2 (3)C17—C19—H19B109.5
O1—C10—N108.97 (19)H19A—C19—H19B109.5
O3—C11—N118.3 (2)C17—C19—H19C109.5
O3—C11—C12123.1 (2)H19A—C19—H19C109.5
N—C11—C12118.6 (2)H19B—C19—H19C109.5
C11—C12—C13110.96 (19)C10—N—C11129.0 (2)
C11—C12—H12A109.4C10—N—C8111.57 (19)
C13—C12—H12A109.4C11—N—C8119.42 (19)
C11—C12—H12B109.4C10—O1—C9110.18 (18)
C13—C12—H12B109.4C16—O4—C17106.18 (16)
H12A—C12—H12B108.0C15—O5—C17109.33 (17)
C6—C1—C2—C30.4 (4)O2—C10—N—C119.7 (4)
C7—C1—C2—C3179.0 (2)O1—C10—N—C11170.7 (2)
C1—C2—C3—C41.5 (4)O2—C10—N—C8172.6 (3)
C2—C3—C4—C51.5 (4)O1—C10—N—C86.9 (3)
C3—C4—C5—C60.4 (4)O3—C11—N—C10179.5 (2)
C2—C1—C6—C50.7 (4)C12—C11—N—C100.9 (3)
C7—C1—C6—C5177.9 (2)O3—C11—N—C82.0 (3)
C4—C5—C6—C10.7 (4)C12—C11—N—C8176.5 (2)
C6—C1—C7—C890.3 (3)C7—C8—N—C10104.9 (2)
C2—C1—C7—C888.2 (3)C9—C8—N—C1016.3 (2)
C1—C7—C8—N172.7 (2)C7—C8—N—C1177.2 (3)
C1—C7—C8—C974.6 (3)C9—C8—N—C11161.60 (19)
N—C8—C9—O119.2 (2)O2—C10—O1—C9173.6 (2)
C7—C8—C9—O1100.7 (2)N—C10—O1—C96.8 (3)
O3—C11—C12—C1321.4 (3)C8—C9—O1—C1017.1 (2)
N—C11—C12—C13160.2 (2)C15—C16—O4—C1735.9 (2)
C11—C12—C13—C14166.14 (19)O5—C17—O4—C1633.2 (2)
C12—C13—C14—C15173.5 (2)C18—C17—O4—C16148.95 (19)
C12—C13—C14—Cl53.4 (2)C19—C17—O4—C1685.6 (2)
C13—C14—C15—O563.7 (2)C14—C15—O5—C17116.1 (2)
Cl—C14—C15—O5173.64 (14)C16—C15—O5—C175.0 (2)
C13—C14—C15—C1651.1 (3)O4—C17—O5—C1516.6 (2)
Cl—C14—C15—C1671.6 (2)C18—C17—O5—C15133.4 (2)
O5—C15—C16—O424.8 (2)C19—C17—O5—C15102.2 (2)
C14—C15—C16—O492.5 (2)

Experimental details

Crystal data
Chemical formulaC19H24ClNO5
Mr381.84
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)11.7552 (9), 5.9139 (4), 13.8789 (11)
β (°) 109.023 (9)
V3)912.16 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.910, 0.954
No. of measured, independent and
observed [I > 2s(I)] reflections
6562, 3594, 2515
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.047, 0.98
No. of reflections3594
No. of parameters237
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1198 Friedel pairs
Absolute structure parameter0.11 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL-Plus (Sheldrick, 2008).

 

References

First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Ennis, M. D. & Marthre, D. J. (1982). J. Am. Chem. Soc. 104, 1737–1739.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGille, A. & Hiersemann, M. (2010). Org. Lett. 12, 5258–5261.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJang, K. P., Choi, S. Y., Chung, Y. K. & Lee, E. (2011). Org. Lett. 13, 2476–2479.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationŘezanka, T., Hanuš, L. O. & Dembitsky, V. M. (2004). Tetrahedron, 60, 12191–12199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds