supplementary materials


fj2485 scheme

Acta Cryst. (2012). E68, o44    [ doi:10.1107/S160053681105183X ]

trans-(Ethene-1,2-diyl)bis(diphenylphosphine selenide)

Z. Phasha, S. Makhoba and A. Muller

Abstract top

In the title molecule, C26H22P2Se2, both P atoms have distorted tetrahedral environments, resulting in effective cone angles of 177 and 174°. Inversion twinning was detected and refined to a ratio of 0.35:0.65. Weak intermolecular C-H...Se interactions are observed.

Comment top

The study of the transition metal phosphorous bond spans over several decades using various techniques such as crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we have extended this study to selenium derivatives of the phosphorus ligands (see Muller et al., 2008). Reported as part of the above continuing study, the single-crystal structure of the bis-phosphorus containing compound, (SePPh2)2C2H2 where Ph = C6H5, is reported here.

The structure of the title compound (see Figure 1, Table 1) shows distorted tetrahedral environments for both the phosphorus centers. The PSe bond distances (2.1026 (6), 2.1054 (6) Å for Se1 and Se2 respectively) are marginally statistically different, possibly due to the weak C—H···Se intermolecular hydrogen bonding observed (see Figure 2, Table 2; comparison based on 1% normal distribution coefficient).

The phosphorus ligand bulkiness was evaluated by using an adaptation of the well known Tolman cone angle model (Tolman, 1977). Instead of using a CPK model, the actual geometry from the crystal structure was taken to determine an 'effective cone angle' (Otto et al. 2001). The SeP distances were also adjusted to 2.28 Å (the default value used by Tolman) to remove the effect of bond distance variation. Two different cone angles of 177° and 174° were obtained for P1and P2 respectively. The difference in cone angles may also be attributed to the weak interactions mentioned previously.

Related literature top

For background to the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2008). For information on cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Trans-1,2-bis(diphenylphosphino)ethylene and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN and the trans-1,2-bis(diphenylphosphino)ethylene compound (ca 0.04 mmol) were dissolved in the minimum amounts of methanol (10 - 20 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. The Flack parameter (based on 2517 Friedel pairs) indicates racemic twinning of the compound. This refined to a 35.4:64.6 racemic twin. The highest residual electron density of 0.51 e.Å-3 is 0.98 Å from Se1 representing no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : View of the title compound indicating labelling and displacement ellipsoids (drawn at a 50% probability level).
[Figure 2] Fig. 2. : Partial packing diagram of the title compound illustrating the weak C–H···Se interactions stabilizing the crystal packing.
trans-(Ethene-1,2-diyl)bis(diphenylphosphine selenide) top
Crystal data top
C26H22P2Se2F(000) = 1104
Mr = 554.3Dx = 1.579 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5956 reflections
a = 9.0604 (9) Åθ = 2.3–28.2°
b = 14.3239 (14) ŵ = 3.32 mm1
c = 17.9617 (18) ÅT = 100 K
V = 2331.1 (4) Å3Plate, colourless
Z = 40.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5814 independent reflections
graphite5356 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.028
φ and ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1012
Tmin = 0.479, Tmax = 0.879k = 1219
14567 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0268P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5814 reflectionsΔρmax = 0.51 e Å3
272 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 2517 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.354 (6)
Crystal data top
C26H22P2Se2V = 2331.1 (4) Å3
Mr = 554.3Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0604 (9) ŵ = 3.32 mm1
b = 14.3239 (14) ÅT = 100 K
c = 17.9617 (18) Å0.26 × 0.21 × 0.04 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5814 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5356 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.879Rint = 0.028
14567 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.48 e Å3
5814 reflectionsAbsolute structure: Flack (1983), 2517 Friedel pairs
272 parametersFlack parameter: 0.354 (6)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 588 frames were collected with a frame width of 0.5° covering up to θ = 28.49° with 99.2% completeness accomplished.

Analytical data: 1H NMR (CDCl3, 400 MHz) δ 7.50–7.70 (m, 10H), 7.51–7.42 (m, 10H), 7.89 (t, 3J = 22.8 Hz, 2H); 13C {H} NMR (CDCl3, 100 MHz) δ 142.4 (ethylene), 132.1, 131.8, 129.0 (Ar); 31P {H} NMR (CDCl3, 160 MHz):δ = 28.58 (dd, 1JSe—P = 694.9, 814.8 Hz, 2P).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0685 (2)0.72411 (15)0.64399 (13)0.0134 (4)
C21.0826 (3)0.62874 (15)0.62917 (14)0.0185 (5)
H20.99750.59210.6190.022*
C31.2215 (3)0.58774 (15)0.62938 (15)0.0226 (5)
H31.2310.52280.61980.027*
C41.3460 (3)0.64076 (16)0.64339 (15)0.0197 (5)
H41.44070.61230.64340.024*
C51.3321 (3)0.73551 (16)0.65749 (14)0.0186 (5)
H51.41750.77210.66680.022*
C61.1940 (3)0.77686 (15)0.65806 (13)0.0173 (5)
H61.1850.84170.66810.021*
C70.9158 (2)0.89938 (15)0.62504 (14)0.0158 (5)
C80.9380 (3)0.92399 (16)0.55117 (14)0.0198 (5)
H80.9390.87710.51380.024*
C90.9588 (3)1.01653 (18)0.53168 (17)0.0265 (6)
H90.97431.0330.4810.032*
C100.9571 (3)1.08522 (17)0.58612 (17)0.0278 (6)
H100.97071.14880.57260.033*
C110.9357 (3)1.06180 (17)0.65944 (18)0.0282 (6)
H110.9351.10910.69650.034*
C120.9150 (3)0.96844 (16)0.67974 (16)0.0221 (5)
H120.90040.95220.73050.027*
C130.4690 (2)0.81404 (15)0.84948 (14)0.0156 (5)
C140.4717 (3)0.90052 (16)0.81243 (15)0.0212 (5)
H140.56220.92420.79350.025*
C150.3430 (3)0.95120 (17)0.80341 (16)0.0252 (6)
H150.34511.00950.77820.03*
C160.2105 (3)0.91681 (17)0.83126 (15)0.0250 (6)
H160.12210.95160.8250.03*
C170.2075 (3)0.83228 (17)0.86790 (15)0.0244 (5)
H170.11690.80880.88690.029*
C180.3369 (3)0.78136 (17)0.87717 (14)0.0211 (5)
H180.33430.72340.90290.025*
C190.5966 (2)0.63390 (15)0.88948 (14)0.0145 (5)
C200.6670 (3)0.59705 (15)0.95104 (14)0.0192 (5)
H200.7370.63360.97750.023*
C210.6355 (3)0.50619 (16)0.97447 (16)0.0245 (6)
H210.68520.48061.01640.029*
C220.5324 (3)0.45375 (16)0.93677 (16)0.0230 (6)
H220.50920.39250.95340.028*
C230.4621 (3)0.49016 (17)0.87437 (17)0.0243 (6)
H230.39230.45350.84790.029*
C240.4944 (3)0.58029 (17)0.85093 (16)0.0214 (5)
H240.44640.60530.80840.026*
C250.7048 (2)0.74177 (14)0.76513 (12)0.0142 (4)
H250.64310.7110.73010.017*
C260.8328 (2)0.77552 (14)0.74213 (13)0.0147 (4)
H260.89920.80020.7780.018*
P10.88646 (6)0.77673 (4)0.64539 (3)0.01278 (11)
P20.64250 (6)0.75184 (4)0.86038 (3)0.01338 (12)
Se10.73133 (2)0.712573 (15)0.574954 (15)0.01794 (6)
Se20.79614 (2)0.821665 (14)0.928447 (14)0.01582 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0146 (10)0.0147 (10)0.0108 (10)0.0023 (8)0.0025 (9)0.0012 (8)
C20.0186 (11)0.0144 (11)0.0226 (14)0.0001 (9)0.0022 (11)0.0013 (9)
C30.0248 (12)0.0135 (11)0.0295 (14)0.0039 (9)0.0034 (12)0.0008 (9)
C40.0178 (11)0.0191 (11)0.0224 (13)0.0056 (9)0.0008 (11)0.0032 (10)
C50.0155 (11)0.0190 (11)0.0213 (13)0.0012 (9)0.0027 (10)0.0005 (9)
C60.0200 (11)0.0127 (10)0.0193 (12)0.0014 (9)0.0001 (10)0.0049 (9)
C70.0123 (10)0.0174 (11)0.0178 (13)0.0019 (8)0.0017 (10)0.0017 (9)
C80.0250 (12)0.0168 (11)0.0176 (13)0.0007 (10)0.0004 (11)0.0001 (9)
C90.0265 (14)0.0257 (14)0.0274 (16)0.0004 (11)0.0010 (13)0.0078 (11)
C100.0263 (12)0.0147 (12)0.0423 (19)0.0005 (9)0.0028 (14)0.0064 (11)
C110.0316 (14)0.0149 (12)0.0379 (18)0.0000 (11)0.0067 (14)0.0048 (11)
C120.0249 (12)0.0184 (11)0.0230 (14)0.0000 (10)0.0028 (12)0.0010 (10)
C130.0182 (10)0.0151 (11)0.0136 (11)0.0030 (9)0.0024 (10)0.0028 (9)
C140.0209 (12)0.0174 (12)0.0252 (14)0.0010 (9)0.0023 (11)0.0023 (10)
C150.0269 (13)0.0172 (11)0.0317 (16)0.0059 (10)0.0039 (12)0.0034 (10)
C160.0239 (12)0.0254 (12)0.0259 (14)0.0100 (11)0.0037 (12)0.0062 (10)
C170.0193 (11)0.0306 (13)0.0232 (14)0.0027 (11)0.0034 (12)0.0003 (10)
C180.0241 (12)0.0227 (12)0.0165 (12)0.0032 (10)0.0061 (11)0.0039 (10)
C190.0153 (10)0.0114 (11)0.0168 (12)0.0026 (8)0.0044 (10)0.0009 (9)
C200.0184 (11)0.0187 (11)0.0206 (13)0.0023 (9)0.0001 (10)0.0001 (9)
C210.0328 (14)0.0183 (12)0.0225 (15)0.0018 (11)0.0029 (12)0.0048 (10)
C220.0283 (12)0.0149 (11)0.0257 (15)0.0027 (9)0.0049 (12)0.0054 (11)
C230.0233 (12)0.0208 (12)0.0288 (16)0.0062 (10)0.0010 (12)0.0026 (11)
C240.0216 (12)0.0219 (12)0.0207 (13)0.0009 (9)0.0024 (11)0.0029 (10)
C250.0189 (10)0.0106 (9)0.0130 (11)0.0014 (9)0.0008 (10)0.0000 (8)
C260.0165 (10)0.0135 (10)0.0140 (11)0.0019 (8)0.0014 (9)0.0001 (8)
P10.0135 (2)0.0126 (3)0.0122 (3)0.0001 (2)0.0011 (2)0.0005 (2)
P20.0148 (3)0.0124 (3)0.0130 (3)0.0017 (2)0.0019 (2)0.0009 (2)
Se10.01645 (10)0.01938 (11)0.01798 (12)0.00169 (8)0.00126 (11)0.00443 (9)
Se20.01802 (10)0.01372 (10)0.01572 (11)0.00030 (8)0.00040 (11)0.00065 (9)
Geometric parameters (Å, °) top
C1—C61.388 (3)C14—H140.95
C1—C21.398 (3)C15—C161.391 (4)
C1—P11.813 (2)C15—H150.95
C2—C31.389 (3)C16—C171.378 (4)
C2—H20.95C16—H160.95
C3—C41.383 (3)C17—C181.391 (3)
C3—H30.95C17—H170.95
C4—C51.386 (3)C18—H180.95
C4—H40.95C19—C201.381 (3)
C5—C61.384 (3)C19—C241.388 (3)
C5—H50.95C19—P21.817 (2)
C6—H60.95C20—C211.397 (3)
C7—C81.387 (3)C20—H200.95
C7—C121.394 (3)C21—C221.377 (4)
C7—P11.814 (2)C21—H210.95
C8—C91.384 (3)C22—C231.391 (4)
C8—H80.95C22—H220.95
C9—C101.387 (4)C23—C241.389 (3)
C9—H90.95C23—H230.95
C10—C111.373 (4)C24—H240.95
C10—H100.95C25—C261.322 (3)
C11—C121.399 (3)C25—P21.807 (2)
C11—H110.95C25—H250.95
C12—H120.95C26—P11.804 (2)
C13—C181.377 (3)C26—H260.95
C13—C141.406 (3)P1—Se12.1026 (6)
C13—P21.818 (2)P2—Se22.1054 (6)
C14—C151.383 (3)
C6—C1—C2119.4 (2)C17—C16—C15120.0 (2)
C6—C1—P1121.07 (16)C17—C16—H16120
C2—C1—P1119.47 (17)C15—C16—H16120
C3—C2—C1119.7 (2)C16—C17—C18120.1 (2)
C3—C2—H2120.1C16—C17—H17120
C1—C2—H2120.1C18—C17—H17120
C4—C3—C2120.5 (2)C13—C18—C17120.7 (2)
C4—C3—H3119.8C13—C18—H18119.6
C2—C3—H3119.8C17—C18—H18119.6
C3—C4—C5119.8 (2)C20—C19—C24119.7 (2)
C3—C4—H4120.1C20—C19—P2118.68 (18)
C5—C4—H4120.1C24—C19—P2121.57 (19)
C6—C5—C4120.1 (2)C19—C20—C21120.2 (2)
C6—C5—H5119.9C19—C20—H20119.9
C4—C5—H5119.9C21—C20—H20119.9
C5—C6—C1120.40 (19)C22—C21—C20119.9 (2)
C5—C6—H6119.8C22—C21—H21120
C1—C6—H6119.8C20—C21—H21120
C8—C7—C12119.6 (2)C21—C22—C23120.2 (2)
C8—C7—P1117.39 (19)C21—C22—H22119.9
C12—C7—P1123.0 (2)C23—C22—H22119.9
C9—C8—C7120.3 (2)C24—C23—C22119.8 (2)
C9—C8—H8119.8C24—C23—H23120.1
C7—C8—H8119.8C22—C23—H23120.1
C8—C9—C10120.0 (3)C19—C24—C23120.2 (3)
C8—C9—H9120C19—C24—H24119.9
C10—C9—H9120C23—C24—H24119.9
C11—C10—C9120.3 (2)C26—C25—P2122.73 (18)
C11—C10—H10119.8C26—C25—H25118.6
C9—C10—H10119.8P2—C25—H25118.6
C10—C11—C12120.2 (3)C25—C26—P1122.73 (18)
C10—C11—H11119.9C25—C26—H26118.6
C12—C11—H11119.9P1—C26—H26118.6
C7—C12—C11119.6 (3)C26—P1—C1104.75 (11)
C7—C12—H12120.2C26—P1—C7104.06 (11)
C11—C12—H12120.2C1—P1—C7105.45 (10)
C18—C13—C14119.0 (2)C26—P1—Se1113.27 (8)
C18—C13—P2123.07 (18)C1—P1—Se1114.70 (8)
C14—C13—P2117.87 (18)C7—P1—Se1113.58 (8)
C15—C14—C13120.2 (2)C25—P2—C19105.65 (10)
C15—C14—H14119.9C25—P2—C13101.97 (11)
C13—C14—H14119.9C19—P2—C13106.79 (11)
C14—C15—C16120.0 (2)C25—P2—Se2112.39 (8)
C14—C15—H15120C19—P2—Se2115.22 (8)
C16—C15—H15120C13—P2—Se2113.68 (8)
C6—C1—C2—C30.6 (4)P2—C25—C26—P1173.15 (11)
P1—C1—C2—C3178.8 (2)C25—C26—P1—C1129.02 (19)
C1—C2—C3—C40.7 (4)C25—C26—P1—C7120.51 (19)
C2—C3—C4—C50.1 (4)C25—C26—P1—Se13.3 (2)
C3—C4—C5—C60.4 (4)C6—C1—P1—C2684.4 (2)
C4—C5—C6—C10.5 (4)C2—C1—P1—C2695.0 (2)
C2—C1—C6—C50.0 (4)C6—C1—P1—C725.1 (2)
P1—C1—C6—C5179.38 (19)C2—C1—P1—C7155.5 (2)
C12—C7—C8—C90.2 (4)C6—C1—P1—Se1150.79 (18)
P1—C7—C8—C9179.00 (19)C2—C1—P1—Se129.8 (2)
C7—C8—C9—C100.2 (4)C8—C7—P1—C26170.97 (19)
C8—C9—C10—C110.4 (4)C12—C7—P1—C268.2 (2)
C9—C10—C11—C120.2 (4)C8—C7—P1—C179.1 (2)
C8—C7—C12—C110.4 (4)C12—C7—P1—C1101.8 (2)
P1—C7—C12—C11178.79 (19)C8—C7—P1—Se147.3 (2)
C10—C11—C12—C70.2 (4)C12—C7—P1—Se1131.83 (19)
C18—C13—C14—C150.7 (4)C26—C25—P2—C19126.76 (19)
P2—C13—C14—C15179.2 (2)C26—C25—P2—C13121.8 (2)
C13—C14—C15—C160.2 (4)C26—C25—P2—Se20.3 (2)
C14—C15—C16—C170.1 (4)C20—C19—P2—C25122.47 (19)
C15—C16—C17—C180.1 (4)C24—C19—P2—C2556.8 (2)
C14—C13—C18—C170.9 (4)C20—C19—P2—C13129.50 (19)
P2—C13—C18—C17179.33 (19)C24—C19—P2—C1351.2 (2)
C16—C17—C18—C130.6 (4)C20—C19—P2—Se22.2 (2)
C24—C19—C20—C210.0 (4)C24—C19—P2—Se2178.50 (18)
P2—C19—C20—C21179.30 (19)C18—C13—P2—C25125.2 (2)
C19—C20—C21—C221.0 (4)C14—C13—P2—C2556.3 (2)
C20—C21—C22—C231.6 (4)C18—C13—P2—C1914.6 (3)
C21—C22—C23—C241.1 (4)C14—C13—P2—C19166.89 (19)
C20—C19—C24—C230.4 (4)C18—C13—P2—Se2113.6 (2)
P2—C19—C24—C23179.7 (2)C14—C13—P2—Se264.9 (2)
C22—C23—C24—C190.1 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Se2i0.953.023.953 (2)168
C21—H21···Se1ii0.953.063.812 (2)138
C17—H17···Se2iii0.953.013.885 (3)155
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+3/2, −y+1, z+1/2; (iii) x−1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C3—H3···Se2i0.953.023.953 (2)168
C21—H21···Se1ii0.953.063.812 (2)138
C17—H17···Se2iii0.953.013.885 (3)155
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+3/2, −y+1, z+1/2; (iii) x−1, y, z.
Acknowledgements top

Research funds of the University of Johannesburg are gratefully acknowledged.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.

Otto, S. (2001). Acta Cryst. C57, 793–795.

Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tolman, C. A. (1977). Chem. Rev. 77, 313–348.