supplementary materials


gk2431 scheme

Acta Cryst. (2012). E68, o228    [ doi:10.1107/S1600536811054353 ]

3-Methylanilinium hydrogen phthalate

M.-L. Liu

Abstract top

The asymmetric unit of the title salt, C7H10N+·C8H5O4-, consists of two 3-methylphenylammonium cations and two hydrogen phthalate anions. There are strong intramolecular O-H...O hydrogen bonds in the virtually planar (r.m.s. deviations = 0.054 Å) phthalate anions. In the crystal, the cations and anions are connected via an extensive sytem of N-H...O hydrogen bonds into a corrugated layer extended parallel to (001).

Comment top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic ions and organic ions owing to the tunability of their special structural features and their potential ferroelectric properties (Fu et al., 2011; Ye et al.,2010;).

In our laboratory, the title compound has been synthesized and its crystal structure is herein reported. The title salt, C7H10N+.C8H5O4 has an asymmetric unit that consists of two 3-methylphenylamonium cations and two phthalate anions (Fig 1). In the crystal structure, there are some O—H—O intramolecular hydrogen bonds in the phthalate anions, the phthalate anion is almostly planar. The 3-methylphenylamonium cations and phthalate anions are associated by N—H···O hydrogen-bonding interaction (Fig. 2, Table 1).

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range (below the melting point).

Related literature top

The title compound was investigated as part of work looking for new ferroelectric compounds. For background to ferroelectric compounds consisting of organic cations and inorganic anions, see: Fu et al. (2011); Ye et al. (2010). For a related structure, see: Kadirvelraj et al. (1996).

Experimental top

3.21 g (0.03 mol) of 3-methylaniline was dissolved in 30 ml ethanol to which 4.98 g (0.03 mol) of phthalic acid was added to afford the solution without any precipitation under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the solution after 3 days.

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; O—H = 0.82 Å; C—H = 0.93 Å for Csp2 atoms and C—H = 0.96 Å for Csp3 atoms) with Uiso values Uiso = 1.2Ueq(Csp2,O) and Uiso = 1.5Ueq(Csp3,N) and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Dashed lines indicate hydrogen bonds.
3-methylanilinium 2-carboxybenzoate top
Crystal data top
C7H10N+·C8H5O4F(000) = 1152
Mr = 273.28Dx = 1.306 Mg m3
Monoclinic, P21/nMelting point: 413 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.9325 (16) ÅCell parameters from 4906 reflections
b = 17.931 (4) Åθ = 3.4–25.0°
c = 19.575 (4) ŵ = 0.10 mm1
β = 93.37 (3)°T = 293 K
V = 2779.5 (10) Å3Block, colourless
Z = 80.36 × 0.32 × 0.28 mm
Data collection top
Rigaku Mercury2
diffractometer
4906 independent reflections
Radiation source: fine-focus sealed tube2489 reflections with I > 2σ(I)
graphiteRint = 0.090
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.963, Tmax = 0.971l = 2323
22962 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
4906 reflectionsΔρmax = 0.18 e Å3
368 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (9)
Crystal data top
C7H10N+·C8H5O4V = 2779.5 (10) Å3
Mr = 273.28Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.9325 (16) ŵ = 0.10 mm1
b = 17.931 (4) ÅT = 293 K
c = 19.575 (4) Å0.36 × 0.32 × 0.28 mm
β = 93.37 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4906 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2489 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.090
22962 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.21 e Å3
4906 reflectionsAbsolute structure: ?
368 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.4142 (3)0.70027 (13)0.16189 (12)0.0493 (7)
H2A0.37970.74460.17610.074*
H2B0.48740.68090.19320.074*
H2C0.32580.67000.15560.074*
N10.0859 (3)0.85234 (13)0.15519 (12)0.0471 (7)
H1A0.01650.87420.18650.071*
H1B0.11630.80780.17040.071*
H1C0.17730.88050.14730.071*
O20.8571 (3)0.14134 (13)0.23666 (12)0.0671 (7)
O60.3588 (3)0.41675 (12)0.24495 (12)0.0680 (7)
O30.8400 (3)0.02633 (13)0.17473 (13)0.0627 (7)
H30.84550.06370.19890.094*
O40.6480 (3)0.04790 (12)0.13023 (12)0.0701 (7)
O10.6943 (3)0.22617 (13)0.27712 (13)0.0703 (7)
O50.2074 (3)0.32453 (13)0.27620 (13)0.0780 (8)
O70.3337 (3)0.53387 (12)0.18671 (13)0.0626 (7)
H70.34240.49360.20650.094*
O80.1401 (3)0.60431 (12)0.13895 (12)0.0676 (7)
C100.0608 (3)0.41746 (16)0.21047 (14)0.0378 (7)
C10.5594 (4)0.13815 (16)0.20140 (14)0.0399 (8)
C150.0443 (4)0.48752 (16)0.17754 (14)0.0402 (7)
C60.5481 (4)0.06991 (16)0.16526 (15)0.0401 (7)
C220.0006 (4)0.84311 (18)0.09148 (15)0.0443 (8)
C90.2169 (4)0.38404 (18)0.24608 (16)0.0459 (8)
C110.0827 (4)0.37315 (18)0.21255 (16)0.0522 (9)
H110.07250.32660.23330.063*
C20.4145 (4)0.18156 (18)0.20308 (16)0.0514 (9)
H20.42050.22660.22660.062*
C70.6849 (4)0.01263 (19)0.15662 (16)0.0480 (8)
C290.4959 (4)0.70911 (18)0.09736 (16)0.0469 (8)
C80.7121 (4)0.17078 (18)0.24167 (16)0.0461 (8)
C230.0200 (4)0.77319 (18)0.06485 (17)0.0517 (9)
H230.01790.73140.08760.062*
C30.2629 (4)0.1606 (2)0.17137 (18)0.0626 (10)
H3A0.16860.19120.17320.075*
C120.2372 (4)0.3946 (2)0.18566 (18)0.0617 (10)
H120.32990.36310.18770.074*
C300.5465 (4)0.64590 (19)0.06421 (17)0.0558 (9)
H300.52980.59940.08380.067*
C280.5197 (4)0.77878 (19)0.0716 (2)0.0651 (10)
H280.48820.82110.09510.078*
C250.6213 (5)0.6503 (3)0.0026 (2)0.0732 (11)
C140.1142 (4)0.50854 (19)0.15125 (16)0.0567 (9)
H140.12700.55470.13000.068*
C130.2539 (4)0.4634 (2)0.15549 (18)0.0662 (10)
H130.35910.47960.13790.079*
C50.3929 (4)0.04985 (18)0.13383 (17)0.0555 (9)
H50.38420.00510.10990.067*
C210.0560 (4)0.9060 (2)0.06061 (19)0.0663 (10)
H210.04130.95270.08000.080*
C190.1539 (5)0.8296 (3)0.02783 (19)0.0838 (13)
H190.20680.82550.06880.101*
C180.0977 (4)0.7657 (2)0.0029 (2)0.0682 (11)
C40.2521 (4)0.0941 (2)0.13703 (19)0.0672 (11)
H40.14970.07900.11590.081*
C200.1342 (5)0.8988 (3)0.0001 (2)0.0880 (13)
H200.17360.94080.02180.106*
C270.5930 (5)0.7842 (3)0.0088 (3)0.0940 (15)
H270.60890.83060.01090.113*
C260.6419 (5)0.7202 (3)0.0240 (2)0.0900 (14)
H260.69070.72480.06590.108*
C240.6775 (6)0.5823 (3)0.0342 (2)0.1177 (18)
H24A0.59760.54280.02900.176*
H24B0.78640.56700.01520.176*
H24C0.68460.59360.08190.176*
C160.1788 (4)0.54521 (18)0.16718 (16)0.0465 (8)
C170.1206 (5)0.6898 (3)0.0274 (2)0.1080 (16)
H17A0.03710.68210.06420.162*
H17B0.10800.65250.00720.162*
H17C0.23130.68610.04440.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0534 (17)0.0370 (15)0.0571 (17)0.0049 (13)0.0004 (14)0.0010 (13)
N10.0494 (16)0.0363 (15)0.0553 (17)0.0015 (13)0.0004 (13)0.0001 (13)
O20.0426 (14)0.0666 (16)0.0910 (18)0.0052 (13)0.0060 (13)0.0292 (14)
O60.0423 (14)0.0593 (15)0.101 (2)0.0084 (12)0.0082 (13)0.0324 (14)
O30.0503 (15)0.0542 (16)0.0834 (19)0.0053 (12)0.0017 (13)0.0211 (13)
O40.0704 (17)0.0445 (15)0.0935 (19)0.0018 (13)0.0101 (14)0.0154 (14)
O10.0647 (16)0.0536 (15)0.0921 (19)0.0035 (13)0.0002 (13)0.0288 (14)
O50.0611 (17)0.0530 (16)0.119 (2)0.0025 (13)0.0001 (15)0.0312 (16)
O70.0471 (15)0.0452 (14)0.095 (2)0.0076 (12)0.0034 (13)0.0204 (13)
O80.0647 (17)0.0446 (14)0.0925 (19)0.0009 (12)0.0043 (13)0.0181 (13)
C100.0354 (18)0.0393 (18)0.0392 (17)0.0020 (15)0.0062 (14)0.0048 (14)
C10.0398 (19)0.0389 (18)0.0416 (18)0.0002 (15)0.0091 (15)0.0057 (15)
C150.0421 (19)0.0412 (19)0.0380 (17)0.0019 (16)0.0075 (14)0.0056 (15)
C60.0393 (19)0.0383 (18)0.0429 (18)0.0005 (15)0.0036 (15)0.0084 (15)
C220.0355 (18)0.053 (2)0.0440 (19)0.0000 (16)0.0028 (15)0.0059 (17)
C90.044 (2)0.042 (2)0.052 (2)0.0034 (17)0.0049 (16)0.0038 (16)
C110.048 (2)0.052 (2)0.057 (2)0.0032 (18)0.0058 (17)0.0013 (17)
C20.048 (2)0.049 (2)0.058 (2)0.0047 (18)0.0083 (17)0.0028 (17)
C70.049 (2)0.045 (2)0.050 (2)0.0040 (18)0.0025 (16)0.0032 (17)
C290.0395 (19)0.047 (2)0.053 (2)0.0051 (16)0.0031 (16)0.0107 (17)
C80.049 (2)0.0370 (19)0.052 (2)0.0021 (17)0.0058 (17)0.0005 (16)
C230.046 (2)0.050 (2)0.058 (2)0.0005 (17)0.0047 (17)0.0075 (18)
C30.040 (2)0.069 (3)0.080 (3)0.010 (2)0.0075 (18)0.011 (2)
C120.041 (2)0.072 (3)0.072 (3)0.011 (2)0.0047 (18)0.003 (2)
C300.059 (2)0.051 (2)0.058 (2)0.0056 (19)0.0037 (18)0.0004 (19)
C280.056 (2)0.051 (2)0.088 (3)0.0011 (19)0.001 (2)0.023 (2)
C250.065 (3)0.102 (3)0.053 (2)0.008 (2)0.006 (2)0.007 (3)
C140.047 (2)0.060 (2)0.062 (2)0.0070 (19)0.0002 (18)0.0053 (18)
C130.036 (2)0.087 (3)0.074 (3)0.009 (2)0.0050 (18)0.000 (2)
C50.048 (2)0.048 (2)0.069 (2)0.0042 (18)0.0068 (18)0.0001 (18)
C210.065 (3)0.060 (2)0.075 (3)0.000 (2)0.009 (2)0.019 (2)
C190.065 (3)0.139 (4)0.048 (2)0.017 (3)0.013 (2)0.016 (3)
C180.053 (2)0.095 (3)0.055 (2)0.018 (2)0.008 (2)0.020 (2)
C40.047 (2)0.070 (3)0.083 (3)0.003 (2)0.009 (2)0.005 (2)
C200.081 (3)0.105 (4)0.080 (3)0.006 (3)0.018 (3)0.035 (3)
C270.070 (3)0.097 (4)0.115 (4)0.007 (3)0.006 (3)0.065 (3)
C260.064 (3)0.137 (4)0.069 (3)0.000 (3)0.003 (2)0.028 (3)
C240.109 (4)0.149 (4)0.099 (3)0.023 (3)0.041 (3)0.058 (3)
C160.049 (2)0.044 (2)0.046 (2)0.0031 (18)0.0020 (17)0.0047 (16)
C170.103 (4)0.128 (4)0.092 (3)0.027 (3)0.002 (3)0.054 (3)
Geometric parameters (Å, °) top
N2—C291.462 (4)C29—C301.377 (4)
N2—H2A0.8900C23—C181.399 (5)
N2—H2B0.8900C23—H230.9300
N2—H2C0.8900C3—C41.368 (4)
N1—C221.468 (4)C3—H3A0.9300
N1—H1A0.8900C12—C131.371 (5)
N1—H1B0.8900C12—H120.9300
N1—H1C0.8900C30—C251.377 (5)
O2—C81.275 (3)C30—H300.9300
O6—C91.271 (3)C28—C271.394 (5)
O3—C71.284 (3)C28—H280.9300
O3—H30.8200C25—C261.372 (5)
O4—C71.230 (3)C25—C241.496 (5)
O1—C81.225 (3)C14—C131.379 (4)
O5—C91.223 (3)C14—H140.9300
O7—C161.281 (3)C13—H130.9300
O7—H70.8200C5—C41.375 (4)
O8—C161.226 (3)C5—H50.9300
C10—C111.390 (4)C21—C201.375 (5)
C10—C151.414 (4)C21—H210.9300
C10—C91.509 (4)C19—C201.367 (5)
C1—C21.390 (4)C19—C181.381 (5)
C1—C61.413 (4)C19—H190.9300
C1—C81.522 (4)C18—C171.500 (5)
C15—C141.382 (4)C4—H40.9300
C15—C161.508 (4)C20—H200.9300
C6—C51.391 (4)C27—C261.381 (6)
C6—C71.511 (4)C27—H270.9300
C22—C211.364 (4)C26—H260.9300
C22—C231.370 (4)C24—H24A0.9600
C11—C121.361 (4)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C2—C31.373 (4)C17—H17A0.9600
C2—H20.9300C17—H17B0.9600
C29—C281.364 (4)C17—H17C0.9600
C29—N2—H2A109.5C13—C12—H12120.5
C29—N2—H2B109.5C29—C30—C25121.2 (3)
H2A—N2—H2B109.5C29—C30—H30119.4
C29—N2—H2C109.5C25—C30—H30119.4
H2A—N2—H2C109.5C29—C28—C27117.6 (4)
H2B—N2—H2C109.5C29—C28—H28121.2
C22—N1—H1A109.5C27—C28—H28121.2
C22—N1—H1B109.5C26—C25—C30116.9 (4)
H1A—N1—H1B109.5C26—C25—C24121.0 (4)
C22—N1—H1C109.5C30—C25—C24122.1 (4)
H1A—N1—H1C109.5C13—C14—C15122.3 (3)
H1B—N1—H1C109.5C13—C14—H14118.8
C7—O3—H3109.5C15—C14—H14118.8
C16—O7—H7109.5C12—C13—C14119.7 (3)
C11—C10—C15117.8 (3)C12—C13—H13120.1
C11—C10—C9114.2 (3)C14—C13—H13120.1
C15—C10—C9127.9 (3)C4—C5—C6122.1 (3)
C2—C1—C6117.9 (3)C4—C5—H5119.0
C2—C1—C8114.0 (3)C6—C5—H5119.0
C6—C1—C8128.1 (3)C22—C21—C20118.5 (4)
C14—C15—C10118.0 (3)C22—C21—H21120.7
C14—C15—C16113.4 (3)C20—C21—H21120.7
C10—C15—C16128.5 (3)C20—C19—C18122.1 (4)
C5—C6—C1118.3 (3)C20—C19—H19119.0
C5—C6—C7113.4 (3)C18—C19—H19119.0
C1—C6—C7128.3 (3)C19—C18—C23117.9 (4)
C21—C22—C23122.8 (3)C19—C18—C17122.1 (4)
C21—C22—N1117.5 (3)C23—C18—C17120.0 (4)
C23—C22—N1119.7 (3)C3—C4—C5119.8 (3)
O5—C9—O6119.4 (3)C3—C4—H4120.1
O5—C9—C10119.8 (3)C5—C4—H4120.1
O6—C9—C10120.8 (3)C19—C20—C21119.8 (4)
C12—C11—C10123.2 (3)C19—C20—H20120.1
C12—C11—H11118.4C21—C20—H20120.1
C10—C11—H11118.4C26—C27—C28119.7 (4)
C3—C2—C1122.6 (3)C26—C27—H27120.1
C3—C2—H2118.7C28—C27—H27120.1
C1—C2—H2118.7C25—C26—C27122.6 (4)
O4—C7—O3119.0 (3)C25—C26—H26118.7
O4—C7—C6119.5 (3)C27—C26—H26118.7
O3—C7—C6121.4 (3)C25—C24—H24A109.5
C28—C29—C30121.9 (3)C25—C24—H24B109.5
C28—C29—N2119.8 (3)H24A—C24—H24B109.5
C30—C29—N2118.3 (3)C25—C24—H24C109.5
O1—C8—O2120.9 (3)H24A—C24—H24C109.5
O1—C8—C1119.4 (3)H24B—C24—H24C109.5
O2—C8—C1119.7 (3)O8—C16—O7118.8 (3)
C22—C23—C18118.9 (3)O8—C16—C15119.5 (3)
C22—C23—H23120.6O7—C16—C15121.6 (3)
C18—C23—H23120.6C18—C17—H17A109.5
C4—C3—C2119.3 (3)C18—C17—H17B109.5
C4—C3—H3A120.4H17A—C17—H17B109.5
C2—C3—H3A120.4C18—C17—H17C109.5
C11—C12—C13118.9 (3)H17A—C17—H17C109.5
C11—C12—H12120.5H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.891.872.739 (3)166
N2—H2B···O2ii0.891.932.815 (3)178
N2—H2C···O80.891.902.789 (3)178
N1—H1A···O6i0.891.942.826 (3)177
N1—H1B···O1i0.891.912.784 (3)166
N1—H1C···O4iii0.891.902.788 (3)172
O3—H3···O20.821.582.392 (3)173
O7—H7···O60.821.572.392 (3)180
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.891.872.739 (3)166
N2—H2B···O2ii0.891.932.815 (3)178
N2—H2C···O80.891.902.789 (3)178
N1—H1A···O6i0.891.942.826 (3)177
N1—H1B···O1i0.891.912.784 (3)166
N1—H1C···O4iii0.891.902.788 (3)172
O3—H3···O20.821.582.392 (3)173
O7—H7···O60.821.572.392 (3)180
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1, y+1, z.
Acknowledgements top

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

references
References top

Fu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780–12786.

Kadirvelraj, R., Umarji, A. M., Robinson, W. T., Bhattacharya, S. & Row, T. N. G. (1996). Chem. Mater. 8, 2313–2323.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Appl. Cryst. 43, 1031–1035.