supplementary materials


gw2110 scheme

Acta Cryst. (2012). E68, o176    [ doi:10.1107/S1600536811052585 ]

(S)-4-Phenyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)-1,3-thiazole

S. Pawar, P. Bhatt, T. Govender, H. G. Kruger and G. E. M. Maguire

Abstract top

In the title compound, C18H16N2S, the N-containing ring adopts a half-chair configuration. The crystal packing features C-H...N contacts. There is no [pi]-[pi] stacking within the crystal structure.

Comment top

Tetrahydroisoquinoline is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity. Molecules with a C1-symmetric tetrahydroisoquinoline backbone have been studied for various catalytic reactions such as allylic alkylation (Blanc et al.,2003), Henry reactions (Kawthekar et al., 2010), asymmetric hydrogenation reactions (Chakka et al.,2010; Peters et al., 2010) and Diels-Alder reactions (Naicker et al.,2010). The title compound is one of the ligands used for asymmetric Henry reaction, its' catalytic activity is currently under investigation. The chiral carbon (C9) has been assigned an S configuration from two-dimensional NMR measurements.

In the title compound, the piperidine ring of the tetrahydroisoquinolinone unit adopts a half chair (Fig 1). This hetrocyclic ring within similar structures displays either a half chair or half boat conformation (Naicker et al. 2011a; 2011b). From the crystal structure it is evident that the N-containing six membered ring assumes a half chair conformation [Q = 0.483 (2) Å, θ = 50.1 (2)° and φ = 321.8 (3)°]. The torsion angle for C1—N1—C9—C10 is -171.72 (14)°. From the plain formed by the atoms C1—C2—C7—C8—C9—N1 the maximum displacement from planarity for N1 is 0.297 Å and for C9 0.331 Å (Fig. 1). This is similar to our previously reported structures which also assume half chair conformations (Naicker et al., 2011a; 2011b). The crystal packing contains C—H···N contacts of distance 3.341 (3) Å (see Fig. 2) (Table 1). There is no π-π stacking within the crystal structure.

Related literature top

The title compound is a potential ligand for the assymetric Henry reaction. For the application of these ligands as catalysts, see: Chakka et al. (2010); Kawthekar et al. (2010); Peters et al. (2010); Naicker et al. (2010). For related structures, see: Naicker et al. (2011a,b).

Experimental top

The N-protected thiazole (3 mmol) was dissolved in THF (15 ml), to this 12 M HCl (15 ml) was added slowly and the reaction mixture was stirred at room temperature for 2 h. THF was evaporated under vacuum. The reaction was monitored by TLC using EtOAc/Hexane (20:80, Rf = 0.5). The reaction mixture was slowly poured into aqueous saturated NaHCO3 solution, the mixture was then extracted with CH2Cl2 (3 x 30 ml). The combined organic layer was dried over MgSO4. The solvent was evaporated under reduced pressure, the residue was purified by column chromatography on silica gel (deactivated with 5% Et3N) with Et3N/EtOAc/Hexane (5/8/100) as the eluent to afford the thiazole as a yellow solid (0.27 g, yield 95%). M.p. = 357–360 K.

Recrystallization from tetrahydrofuran at room temperature afforded colourless crystals suitable for X-ray analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1N, were positioned geometrically with C—H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. CH···N interactions along the b axis.
(S)-4-Phenyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)-1,3-thiazole top
Crystal data top
C18H16N2SDx = 1.328 Mg m3
Mr = 292.39Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 14735 reflections
Hall symbol: P 32θ = 2.5–28.4°
a = 16.223 (1) ŵ = 0.22 mm1
c = 4.8130 (3) ÅT = 173 K
V = 1097.0 (1) Å3Needle, yellow
Z = 30.20 × 0.10 × 0.09 mm
F(000) = 462
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3676 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
graphiteRint = 0.030
0.5° φ scans and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2121
Tmin = 0.958, Tmax = 0.981k = 2121
14735 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1159P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3676 reflectionsΔρmax = 0.23 e Å3
194 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1832 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (6)
Crystal data top
C18H16N2SZ = 3
Mr = 292.39Mo Kα radiation
Trigonal, P32µ = 0.22 mm1
a = 16.223 (1) ÅT = 173 K
c = 4.8130 (3) Å0.20 × 0.10 × 0.09 mm
V = 1097.0 (1) Å3
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3205 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
Rint = 0.030
Tmin = 0.958, Tmax = 0.981θmax = 28.4°
14735 measured reflectionsStandard reflections: 0
3676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.22 e Å3
3676 reflectionsAbsolute structure: Flack (1983), 1832 Friedel pairs
194 parametersFlack parameter: 0.02 (6)
1 restraint
Special details top

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 30 mm; combination of φ and ω scans of 0.5°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00297 (4)0.88075 (3)0.01223 (14)0.04813 (15)
N10.22129 (10)0.70793 (10)0.1094 (3)0.0316 (3)
H1N0.2357 (14)0.6647 (15)0.032 (4)0.036 (5)*
N20.01656 (9)0.71580 (9)0.0576 (3)0.0287 (3)
C10.30267 (13)0.67560 (13)0.2960 (4)0.0359 (4)
H1A0.36030.65690.18250.043*
H1B0.29260.72980.41420.043*
C20.32126 (11)0.59286 (11)0.4831 (4)0.0287 (3)
C30.40599 (13)0.54595 (12)0.6353 (4)0.0359 (4)
H30.45200.56550.61740.043*
C40.42359 (13)0.47165 (13)0.8110 (4)0.0393 (4)
H40.48160.44020.91220.047*
C50.35671 (14)0.44283 (12)0.8399 (4)0.0385 (4)
H50.36880.39150.95990.046*
C60.27209 (13)0.48947 (12)0.6927 (4)0.0323 (4)
H60.22600.47020.71450.039*
C70.25347 (12)0.56434 (11)0.5129 (3)0.0272 (3)
C80.16028 (11)0.61485 (12)0.3565 (4)0.0290 (3)
H8A0.16300.57590.19450.035*
H8B0.10800.62220.47910.035*
C90.13971 (12)0.71258 (12)0.2570 (4)0.0307 (4)
H90.12680.75380.42440.037*
C100.05355 (12)0.75944 (11)0.0730 (4)0.0300 (3)
C110.08088 (13)0.87065 (13)0.2040 (4)0.0388 (4)
H110.13140.92220.30070.047*
C120.06065 (11)0.77863 (11)0.2186 (4)0.0297 (3)
C130.11195 (12)0.74191 (12)0.3839 (4)0.0304 (4)
C140.08499 (13)0.64602 (13)0.3768 (4)0.0362 (4)
H140.03360.60360.26160.043*
C150.13257 (14)0.61174 (14)0.5369 (5)0.0433 (4)
H150.11350.54600.53040.052*
C160.20739 (14)0.67241 (16)0.7052 (5)0.0468 (5)
H160.23980.64890.81500.056*
C170.23454 (16)0.76791 (16)0.7122 (5)0.0506 (5)
H170.28600.81020.82750.061*
C180.18785 (15)0.80224 (15)0.5542 (4)0.0435 (5)
H180.20760.86810.56110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (3)0.0274 (2)0.0703 (3)0.0174 (2)0.0198 (3)0.0061 (2)
N10.0336 (7)0.0316 (7)0.0329 (8)0.0188 (6)0.0027 (6)0.0008 (6)
N20.0263 (7)0.0257 (7)0.0299 (7)0.0099 (6)0.0002 (6)0.0010 (6)
C10.0344 (9)0.0346 (9)0.0433 (10)0.0208 (8)0.0042 (8)0.0016 (8)
C20.0280 (8)0.0268 (8)0.0284 (8)0.0116 (7)0.0020 (7)0.0058 (7)
C30.0294 (8)0.0337 (9)0.0423 (10)0.0141 (7)0.0030 (8)0.0054 (8)
C40.0344 (9)0.0319 (9)0.0413 (10)0.0088 (7)0.0103 (8)0.0014 (8)
C50.0463 (11)0.0280 (8)0.0348 (10)0.0138 (8)0.0055 (8)0.0025 (7)
C60.0372 (9)0.0299 (8)0.0300 (9)0.0169 (7)0.0014 (7)0.0031 (7)
C70.0291 (8)0.0255 (7)0.0243 (8)0.0117 (6)0.0010 (6)0.0058 (6)
C80.0303 (8)0.0295 (8)0.0290 (8)0.0163 (7)0.0008 (7)0.0004 (7)
C90.0321 (8)0.0278 (8)0.0314 (9)0.0143 (7)0.0012 (7)0.0026 (7)
C100.0293 (8)0.0241 (8)0.0332 (9)0.0106 (6)0.0004 (7)0.0027 (7)
C110.0307 (9)0.0323 (9)0.0492 (11)0.0127 (7)0.0090 (8)0.0062 (8)
C120.0246 (7)0.0282 (8)0.0324 (9)0.0102 (6)0.0018 (7)0.0026 (7)
C130.0259 (7)0.0331 (8)0.0292 (9)0.0126 (7)0.0028 (7)0.0006 (7)
C140.0316 (9)0.0334 (9)0.0422 (10)0.0152 (7)0.0045 (8)0.0038 (8)
C150.0432 (10)0.0385 (10)0.0516 (12)0.0230 (9)0.0000 (9)0.0032 (9)
C160.0408 (10)0.0552 (12)0.0475 (12)0.0263 (10)0.0019 (9)0.0101 (10)
C170.0432 (11)0.0513 (12)0.0493 (13)0.0177 (10)0.0186 (10)0.0060 (10)
C180.0424 (10)0.0369 (10)0.0456 (11)0.0157 (8)0.0133 (9)0.0078 (9)
Geometric parameters (Å, °) top
S1—C111.707 (2)C7—C81.512 (2)
S1—C101.7306 (17)C8—C91.525 (2)
N1—C11.460 (2)C8—H8A0.9900
N1—C91.470 (2)C8—H8B0.9900
N1—H1N0.92 (2)C9—C101.501 (2)
N2—C101.297 (2)C9—H91.0000
N2—C121.390 (2)C11—C121.361 (2)
C1—C21.516 (2)C11—H110.9500
C1—H1A0.9900C12—C131.475 (2)
C1—H1B0.9900C13—C141.390 (2)
C2—C71.397 (2)C13—C181.393 (3)
C2—C31.400 (2)C14—C151.389 (3)
C3—C41.380 (3)C14—H140.9500
C3—H30.9500C15—C161.380 (3)
C4—C51.387 (3)C15—H150.9500
C4—H40.9500C16—C171.383 (3)
C5—C61.386 (3)C16—H160.9500
C5—H50.9500C17—C181.372 (3)
C6—C71.396 (2)C17—H170.9500
C6—H60.9500C18—H180.9500
C11—S1—C1089.46 (9)H8A—C8—H8B108.0
C1—N1—C9110.51 (13)N1—C9—C10109.12 (13)
C1—N1—H1N110.0 (13)N1—C9—C8112.02 (13)
C9—N1—H1N106.0 (13)C10—C9—C8112.09 (13)
C10—N2—C12111.30 (14)N1—C9—H9107.8
N1—C1—C2115.29 (14)C10—C9—H9107.8
N1—C1—H1A108.5C8—C9—H9107.8
C2—C1—H1A108.5N2—C10—C9125.27 (15)
N1—C1—H1B108.5N2—C10—S1114.34 (13)
C2—C1—H1B108.5C9—C10—S1120.36 (12)
H1A—C1—H1B107.5C12—C11—S1110.66 (14)
C7—C2—C3119.19 (16)C12—C11—H11124.7
C7—C2—C1120.86 (14)S1—C11—H11124.7
C3—C2—C1119.92 (15)C11—C12—N2114.22 (16)
C4—C3—C2120.90 (17)C11—C12—C13126.56 (16)
C4—C3—H3119.5N2—C12—C13119.21 (14)
C2—C3—H3119.5C14—C13—C18118.28 (17)
C3—C4—C5120.06 (17)C14—C13—C12120.88 (16)
C3—C4—H4120.0C18—C13—C12120.83 (16)
C5—C4—H4120.0C15—C14—C13120.51 (17)
C6—C5—C4119.54 (17)C15—C14—H14119.7
C6—C5—H5120.2C13—C14—H14119.7
C4—C5—H5120.2C16—C15—C14120.46 (19)
C5—C6—C7121.10 (17)C16—C15—H15119.8
C5—C6—H6119.5C14—C15—H15119.8
C7—C6—H6119.5C15—C16—C17119.16 (19)
C6—C7—C2119.21 (15)C15—C16—H16120.4
C6—C7—C8120.20 (15)C17—C16—H16120.4
C2—C7—C8120.58 (15)C18—C17—C16120.65 (19)
C7—C8—C9111.08 (13)C18—C17—H17119.7
C7—C8—H8A109.4C16—C17—H17119.7
C9—C8—H8A109.4C17—C18—C13120.93 (19)
C7—C8—H8B109.4C17—C18—H18119.5
C9—C8—H8B109.4C13—C18—H18119.5
C9—N1—C1—C243.4 (2)C8—C9—C10—N219.7 (2)
N1—C1—C2—C712.8 (2)N1—C9—C10—S173.07 (17)
N1—C1—C2—C3169.22 (16)C8—C9—C10—S1162.25 (13)
C7—C2—C3—C40.7 (3)C11—S1—C10—N20.18 (15)
C1—C2—C3—C4178.73 (16)C11—S1—C10—C9178.05 (15)
C2—C3—C4—C50.3 (3)C10—S1—C11—C120.02 (16)
C3—C4—C5—C60.4 (3)S1—C11—C12—N20.2 (2)
C4—C5—C6—C70.8 (3)S1—C11—C12—C13179.92 (14)
C5—C6—C7—C20.4 (3)C10—N2—C12—C110.3 (2)
C5—C6—C7—C8179.40 (16)C10—N2—C12—C13179.78 (15)
C3—C2—C7—C60.3 (2)C11—C12—C13—C14178.82 (19)
C1—C2—C7—C6178.32 (16)N2—C12—C13—C141.0 (2)
C3—C2—C7—C8178.67 (15)C11—C12—C13—C182.1 (3)
C1—C2—C7—C80.6 (2)N2—C12—C13—C18178.05 (16)
C6—C7—C8—C9160.07 (15)C18—C13—C14—C150.3 (3)
C2—C7—C8—C918.9 (2)C12—C13—C14—C15178.84 (17)
C1—N1—C9—C10171.71 (14)C13—C14—C15—C160.0 (3)
C1—N1—C9—C863.57 (18)C14—C15—C16—C170.1 (3)
C7—C8—C9—N150.29 (18)C15—C16—C17—C180.0 (3)
C7—C8—C9—C10173.34 (13)C16—C17—C18—C130.2 (3)
C12—N2—C10—C9177.80 (16)C14—C13—C18—C170.4 (3)
C12—N2—C10—S10.32 (18)C12—C13—C18—C17178.8 (2)
N1—C9—C10—N2104.95 (19)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.543.341 (3)142
Symmetry codes: (i) −y+1, xy+2, z−1/3.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.952.543.341 (3)142
Symmetry codes: (i) −y+1, xy+2, z−1/3.
Acknowledgements top

The authors thank Dr Hong Su of the University of Capetown for the data collection and structure refinement.

references
References top

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakka, S. K., Peters, B. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2295–2301.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Kawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846–852.

Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o67.

Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.

Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.

Peters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 679–, 687.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.