supplementary materials


hb6506 scheme

Acta Cryst. (2012). E68, o64    [ doi:10.1107/S1600536811052007 ]

(E)-2-(4-tert-Butylphenyl)-2-cyano-1-(3-methyl-1-vinyl-1H-pyrazol-5-yl)vinyl 2,2-dimethylpropanoate

G. Yang, Y. Wang and H. Yu

Abstract top

In the title compound, C24H29N3O2, the dihedral angle between the benzene and pyrazole rings is 80.55 (7)°. The molecule contains an acrylonitrile moiety and exists in an E conformation. Bioassay tests showed that the title compound exhibited higher acaricidal activity than its Z isomer.

Comment top

Acrylonitrile compounds display a broad range of biological, medical and pharmacological properties (Napolitano et al., 2001, Boedec et al., 2008). There is a double bond in the molecule of the acrylonitrile compounds, and both geometric isomers referred to as the E– and Z-isomer can be present. The bioactivities of them often differ from each other (Reggio et al.,1998). In the process of preparation of the title compound, its geometric isomer product was also afforded, which showed obviously different acaricidal activity with the title compound. The bioassay tests showed that the title compound exhibited higher acaricidal activity than its isomer.

In order to confirm the geometry configuration, we report the crystal structure of the title compound (I) in this paper. The molecular structure of (I) is shown in Fig. 1. The the benzene and pyrazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 80.55 (7)°. The C(9)—C(8)—C(10)—C(11), O(1)—C(7)—C(8)—C(9), C(5)—C(7)—C(8)—C(9) and C(20)—O(1)—C(7)—C(5) torsion angles are 38.7 (3), -168.00 (2), 5.8 (3) and 66.1 (2)°, respectively. The crystal packing of (I) shows in Fig. 2. No significant interactions, such as hydrogen bonds or pi-pi stacking, are observed in (I).

Related literature top

For background to acrylonitrile compounds, see: Boedec et al. (2008); Napolitano et al. (2001); Reggio et al. (1998). For further synthetic details, see: Kenzo et al. (2006); Yang et al. (2009).

Experimental top

The title compound was synthesized by 2-(4-(tert-butyl) phenyl)-3-(4-chloro-1-ethyl-3-methyl-1H-pyrazol-5-yl) -3-hydroxyacrylonitrile with pivaloyl chloride in THF (Kenzo et al., 2006, Yang et al., 2009). The crude products were purified by silica-gel column chromatography and then grown from heptane to afford colorless single crystals suitable for X-ray diffraction. To the mixture of 2-(4-(tert-butyl)phenyl)-3-(3-methyl-1-vinyl- 1H-pyrazol-5-yl)-3-hydroxyacrylonitrile (0.61 g, 2.0 mmol) and triethyl amine (0.24 g, 2.4 mmol) in THF (10 ml), pivaloyl chloride (0.29 g, 2.4 mmol) was added dropwise at roomtemperature and reacted for 1 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/10), The title product compound was gained as a white solid (0.59 g, 75%).

Anal. Calcd for C24H29N3O2: C, 73.63; H, 7.47; N, 10.73. Found: C, 73.67; H, 7.50; N, 10.75. 1H NMR(DMSO): 1.14 (s, 9H, CO (CH3)3), 1.33 (s, 9H, Ph-(CH3)3), 2.34 (s, 3H, CH3), 4.92 (d, 1H, CH), 5.79 (d, 1H, CH), 6.56 (s, 1H, py), 7.07 (dd, 1H, CH), 7.45 (d, 2H, Ph), 7.48 (d, 2H, Ph).

Refinement top

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I).
(E)-2-(4-tert-Butylphenyl)-2-cyano-1-(3-methyl-1-vinyl- 1H-pyrazol-5-yl)vinyl 2,2-dimethylpropanoate top
Crystal data top
C24H29N3O2Dx = 1.113 Mg m3
Mr = 391.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4156 reflections
a = 12.0056 (16) Åθ = 2.6–20.4°
b = 19.283 (3) ŵ = 0.07 mm1
c = 20.183 (3) ÅT = 296 K
V = 4672.5 (11) Å3Block, colorless
Z = 80.38 × 0.36 × 0.32 mm
F(000) = 1680
Data collection top
Bruker SMART CCD
diffractometer
4118 independent reflections
Radiation source: fine-focus sealed tube2871 reflections with I > 2σ(I)
graphiteRint = 0.033
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1412
Tmin = 0.973, Tmax = 0.978k = 2222
22480 measured reflectionsl = 2124
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0633P)2 + 1.5443P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4118 reflectionsΔρmax = 0.31 e Å3
269 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
C24H29N3O2V = 4672.5 (11) Å3
Mr = 391.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0056 (16) ŵ = 0.07 mm1
b = 19.283 (3) ÅT = 296 K
c = 20.183 (3) Å0.38 × 0.36 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
4118 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2871 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.033
22480 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.148Δρmax = 0.31 e Å3
S = 1.05Δρmin = 0.20 e Å3
4118 reflectionsAbsolute structure: ?
269 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01105 (11)0.08044 (6)0.73974 (7)0.0513 (4)
O21.19100 (13)0.05098 (8)0.73607 (9)0.0768 (5)
N10.97347 (15)0.00910 (9)0.85788 (8)0.0567 (5)
N21.00594 (16)0.05609 (9)0.90444 (9)0.0646 (5)
N30.8306 (2)0.13197 (10)0.68953 (12)0.0864 (7)
C10.8888 (3)0.07058 (15)0.93404 (14)0.0988 (10)
H1A0.92110.04790.96990.119*
H1B0.84370.10910.94100.119*
C20.9067 (2)0.04860 (12)0.87455 (12)0.0699 (7)
H20.87290.07260.84000.084*
C31.05513 (19)0.10678 (11)0.87092 (11)0.0593 (6)
C41.05432 (18)0.09274 (10)0.80299 (11)0.0576 (5)
H41.08370.12020.76940.069*
C51.00186 (16)0.03077 (10)0.79596 (10)0.0500 (5)
C61.1022 (2)0.16827 (13)0.90619 (13)0.0807 (8)
H6A1.18160.16360.90940.121*
H6B1.08440.20970.88200.121*
H6C1.07090.17100.94990.121*
C70.97899 (16)0.01082 (9)0.73651 (9)0.0485 (5)
C80.92256 (16)0.01145 (10)0.68363 (10)0.0494 (5)
C90.87266 (19)0.07898 (11)0.68833 (11)0.0601 (6)
C100.90092 (17)0.02826 (10)0.62182 (10)0.0512 (5)
C110.79697 (18)0.02586 (12)0.59251 (11)0.0616 (6)
H110.74190.00230.61050.074*
C120.77404 (19)0.06478 (12)0.53681 (11)0.0655 (6)
H120.70330.06240.51820.079*
C130.85333 (19)0.10742 (11)0.50771 (10)0.0580 (5)
C140.9582 (2)0.10713 (13)0.53610 (11)0.0702 (7)
H141.01420.13380.51720.084*
C150.98194 (19)0.06812 (13)0.59201 (11)0.0660 (6)
H151.05350.06890.60960.079*
C160.8234 (2)0.15167 (13)0.44748 (11)0.0702 (7)
C170.7940 (3)0.10424 (16)0.38919 (13)0.1009 (10)
H17A0.85730.07610.37810.151*
H17B0.77350.13200.35160.151*
H17C0.73270.07490.40130.151*
C180.7231 (3)0.19699 (17)0.46499 (16)0.1115 (11)
H18A0.66070.16800.47580.167*
H18B0.70450.22580.42780.167*
H18C0.74110.22570.50240.167*
C190.9185 (3)0.19962 (16)0.42640 (15)0.1063 (11)
H19A0.93870.22910.46280.160*
H19B0.89490.22760.38960.160*
H19C0.98170.17230.41350.160*
C201.12292 (17)0.09525 (10)0.74372 (10)0.0518 (5)
C211.14310 (17)0.17108 (10)0.75803 (11)0.0556 (5)
C221.0765 (3)0.21582 (14)0.7115 (2)0.1206 (13)
H22A1.09310.26370.71970.181*
H22B0.99840.20780.71860.181*
H22C1.09530.20450.66660.181*
C231.2642 (2)0.18635 (16)0.7505 (2)0.1382 (17)
H23A1.28590.17920.70520.207*
H23B1.30640.15600.77870.207*
H23C1.27830.23370.76270.207*
C241.1051 (4)0.18545 (16)0.82782 (17)0.1350 (16)
H24A1.14660.15700.85810.202*
H24B1.02720.17500.83170.202*
H24C1.11730.23350.83810.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (8)0.0407 (7)0.0630 (9)0.0020 (6)0.0045 (6)0.0059 (6)
O20.0561 (9)0.0525 (9)0.1218 (14)0.0054 (8)0.0108 (9)0.0098 (9)
N10.0695 (12)0.0507 (10)0.0500 (10)0.0061 (9)0.0031 (8)0.0059 (8)
N20.0793 (13)0.0600 (11)0.0544 (10)0.0039 (10)0.0052 (9)0.0125 (9)
N30.0908 (16)0.0511 (12)0.1174 (18)0.0115 (11)0.0258 (13)0.0096 (12)
C10.145 (3)0.0825 (19)0.0688 (18)0.0329 (19)0.0055 (17)0.0000 (14)
C20.0892 (18)0.0611 (14)0.0593 (14)0.0129 (13)0.0022 (12)0.0055 (11)
C30.0642 (14)0.0517 (12)0.0620 (13)0.0014 (11)0.0064 (11)0.0130 (10)
C40.0654 (13)0.0489 (12)0.0587 (13)0.0042 (10)0.0022 (10)0.0059 (10)
C50.0534 (12)0.0448 (11)0.0519 (11)0.0020 (9)0.0034 (9)0.0049 (9)
C60.0979 (19)0.0665 (15)0.0776 (16)0.0142 (14)0.0088 (14)0.0238 (13)
C70.0490 (11)0.0411 (10)0.0554 (12)0.0007 (9)0.0007 (9)0.0054 (9)
C80.0504 (11)0.0442 (11)0.0537 (12)0.0005 (9)0.0020 (9)0.0029 (9)
C90.0648 (14)0.0477 (13)0.0676 (14)0.0004 (11)0.0119 (11)0.0053 (10)
C100.0547 (12)0.0468 (11)0.0522 (11)0.0009 (9)0.0039 (9)0.0014 (9)
C110.0564 (13)0.0635 (13)0.0649 (13)0.0116 (11)0.0075 (10)0.0085 (11)
C120.0586 (14)0.0743 (15)0.0637 (14)0.0059 (12)0.0145 (11)0.0092 (12)
C130.0682 (14)0.0568 (12)0.0491 (12)0.0019 (11)0.0072 (10)0.0013 (10)
C140.0679 (15)0.0834 (17)0.0593 (14)0.0164 (13)0.0032 (11)0.0163 (12)
C150.0520 (13)0.0869 (17)0.0591 (13)0.0097 (12)0.0073 (10)0.0130 (12)
C160.0887 (18)0.0700 (15)0.0520 (13)0.0016 (13)0.0084 (12)0.0084 (11)
C170.139 (3)0.106 (2)0.0578 (15)0.004 (2)0.0199 (16)0.0021 (15)
C180.133 (3)0.107 (2)0.095 (2)0.043 (2)0.0074 (19)0.0255 (18)
C190.132 (3)0.103 (2)0.083 (2)0.021 (2)0.0145 (18)0.0406 (17)
C200.0504 (12)0.0487 (11)0.0562 (12)0.0004 (10)0.0018 (9)0.0025 (9)
C210.0500 (12)0.0434 (11)0.0734 (14)0.0003 (9)0.0010 (10)0.0006 (10)
C220.124 (3)0.0591 (16)0.179 (3)0.0163 (17)0.050 (2)0.0348 (19)
C230.0617 (18)0.0661 (17)0.287 (5)0.0136 (14)0.013 (2)0.039 (3)
C240.229 (5)0.0684 (18)0.107 (3)0.036 (2)0.047 (3)0.0325 (18)
Geometric parameters (Å, °) top
O1—C201.375 (2)C13—C161.528 (3)
O1—C71.398 (2)C14—C151.386 (3)
O2—C201.192 (2)C14—H140.9300
N1—C51.361 (2)C15—H150.9300
N1—N21.362 (2)C16—C181.529 (4)
N1—C21.412 (3)C16—C191.530 (4)
N2—C31.327 (3)C16—C171.531 (3)
N3—C91.140 (3)C17—H17A0.9600
C1—C21.291 (3)C17—H17B0.9600
C1—H1A0.9300C17—H17C0.9600
C1—H1B0.9300C18—H18A0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.398 (3)C18—H18C0.9600
C3—C61.494 (3)C19—H19A0.9600
C4—C51.358 (3)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—C71.469 (3)C20—C211.510 (3)
C6—H6A0.9600C21—C231.491 (4)
C6—H6B0.9600C21—C221.505 (4)
C6—H6C0.9600C21—C241.506 (4)
C7—C81.335 (3)C22—H22A0.9600
C8—C91.436 (3)C22—H22B0.9600
C8—C101.487 (3)C22—H22C0.9600
C10—C151.378 (3)C23—H23A0.9600
C10—C111.382 (3)C23—H23B0.9600
C11—C121.379 (3)C23—H23C0.9600
C11—H110.9300C24—H24A0.9600
C12—C131.388 (3)C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—C141.383 (3)
C20—O1—C7118.09 (15)C13—C16—C18108.7 (2)
C5—N1—N2110.95 (17)C13—C16—C19112.5 (2)
C5—N1—C2127.07 (18)C18—C16—C19107.9 (2)
N2—N1—C2121.49 (18)C13—C16—C17109.4 (2)
C3—N2—N1105.40 (17)C18—C16—C17109.7 (2)
C2—C1—H1A120.0C19—C16—C17108.6 (2)
C2—C1—H1B120.0C16—C17—H17A109.5
H1A—C1—H1B120.0C16—C17—H17B109.5
C1—C2—N1125.1 (2)H17A—C17—H17B109.5
C1—C2—H2117.5C16—C17—H17C109.5
N1—C2—H2117.5H17A—C17—H17C109.5
N2—C3—C4110.75 (18)H17B—C17—H17C109.5
N2—C3—C6120.7 (2)C16—C18—H18A109.5
C4—C3—C6128.6 (2)C16—C18—H18B109.5
C5—C4—C3106.02 (19)H18A—C18—H18B109.5
C5—C4—H4127.0C16—C18—H18C109.5
C3—C4—H4127.0H18A—C18—H18C109.5
C4—C5—N1106.87 (17)H18B—C18—H18C109.5
C4—C5—C7130.71 (19)C16—C19—H19A109.5
N1—C5—C7122.39 (17)C16—C19—H19B109.5
C3—C6—H6A109.5H19A—C19—H19B109.5
C3—C6—H6B109.5C16—C19—H19C109.5
H6A—C6—H6B109.5H19A—C19—H19C109.5
C3—C6—H6C109.5H19B—C19—H19C109.5
H6A—C6—H6C109.5O2—C20—O1120.89 (18)
H6B—C6—H6C109.5O2—C20—C21127.47 (19)
C8—C7—O1119.07 (17)O1—C20—C21111.64 (17)
C8—C7—C5124.90 (18)C23—C21—C22110.0 (3)
O1—C7—C5115.76 (16)C23—C21—C24110.8 (3)
C7—C8—C9116.77 (18)C22—C21—C24108.5 (3)
C7—C8—C10126.43 (18)C23—C21—C20109.14 (19)
C9—C8—C10116.71 (17)C22—C21—C20110.5 (2)
N3—C9—C8177.0 (2)C24—C21—C20107.96 (19)
C15—C10—C11117.98 (19)C21—C22—H22A109.5
C15—C10—C8122.03 (18)C21—C22—H22B109.5
C11—C10—C8119.99 (18)H22A—C22—H22B109.5
C12—C11—C10120.7 (2)C21—C22—H22C109.5
C12—C11—H11119.6H22A—C22—H22C109.5
C10—C11—H11119.6H22B—C22—H22C109.5
C11—C12—C13122.0 (2)C21—C23—H23A109.5
C11—C12—H12119.0C21—C23—H23B109.5
C13—C12—H12119.0H23A—C23—H23B109.5
C14—C13—C12116.5 (2)C21—C23—H23C109.5
C14—C13—C16123.1 (2)H23A—C23—H23C109.5
C12—C13—C16120.4 (2)H23B—C23—H23C109.5
C13—C14—C15121.8 (2)C21—C24—H24A109.5
C13—C14—H14119.1C21—C24—H24B109.5
C15—C14—H14119.1H24A—C24—H24B109.5
C10—C15—C14120.9 (2)C21—C24—H24C109.5
C10—C15—H15119.6H24A—C24—H24C109.5
C14—C15—H15119.6H24B—C24—H24C109.5
C5—N1—N2—C30.3 (2)C9—C8—C10—C15141.2 (2)
C2—N1—N2—C3172.7 (2)C7—C8—C10—C11137.6 (2)
C5—N1—C2—C1174.3 (3)C9—C8—C10—C1138.7 (3)
N2—N1—C2—C114.6 (4)C15—C10—C11—C122.9 (3)
N1—N2—C3—C40.1 (2)C8—C10—C11—C12177.1 (2)
N1—N2—C3—C6179.9 (2)C10—C11—C12—C130.3 (4)
N2—C3—C4—C50.1 (3)C11—C12—C13—C142.2 (4)
C6—C3—C4—C5179.9 (2)C11—C12—C13—C16177.8 (2)
C3—C4—C5—N10.3 (2)C12—C13—C14—C152.1 (4)
C3—C4—C5—C7178.3 (2)C16—C13—C14—C15177.9 (2)
N2—N1—C5—C40.4 (2)C11—C10—C15—C143.0 (3)
C2—N1—C5—C4172.3 (2)C8—C10—C15—C14177.0 (2)
N2—N1—C5—C7178.57 (18)C13—C14—C15—C100.5 (4)
C2—N1—C5—C79.5 (3)C14—C13—C16—C18124.4 (3)
C20—O1—C7—C8119.5 (2)C12—C13—C16—C1855.6 (3)
C20—O1—C7—C566.1 (2)C14—C13—C16—C195.0 (3)
C4—C5—C7—C857.1 (3)C12—C13—C16—C19175.0 (2)
N1—C5—C7—C8125.2 (2)C14—C13—C16—C17115.8 (3)
C4—C5—C7—O1128.9 (2)C12—C13—C16—C1764.1 (3)
N1—C5—C7—O148.7 (3)C7—O1—C20—O29.5 (3)
O1—C7—C8—C9168.00 (18)C7—O1—C20—C21170.71 (16)
C5—C7—C8—C95.8 (3)O2—C20—C21—C239.3 (4)
O1—C7—C8—C108.3 (3)O1—C20—C21—C23170.5 (2)
C5—C7—C8—C10177.90 (19)O2—C20—C21—C22130.3 (3)
C7—C8—C9—N3170 (5)O1—C20—C21—C2249.5 (3)
C10—C8—C9—N37(5)O2—C20—C21—C24111.2 (3)
C7—C8—C10—C1542.4 (3)O1—C20—C21—C2469.0 (3)
references
References top

Boedec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747–1754.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kenzo, F., Yasuo, K., Norio, T., Hideaki, S., Masatoshi, O. & Koichi, N. (2006). US Patent 20060178523.

Napolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249–6255.

Reggio, P. H., Basu, S., Barnett, J., Castro, M. T., Hurst, D. P., Seltzman, H. H., Roche, M. J., Gilliam, A. F., Thomas, B. F. & Stevenson, L. A. (1998). J. Med. Chem. 41, 5177–5187.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yang, P., Shen, D. L., Tan, C. X., Weng, J. Q., Lu, Q., Wei, Y. C. & Kong, X. L. (2009). Zhe. Daxue Xuebao, 36, 183–185.