supplementary materials


hb6554 scheme

Acta Cryst. (2012). E68, o203    [ doi:10.1107/S1600536811054079 ]

2-(4-Chloro-1H-indol-3-yl)acetonitrile

M.-L. Pan, X. Li and Y.-H. Luo

Abstract top

The title compound, C10H7ClN2, contains two approximately planar molecules, A and B (r.m.s. deviations = 0.039 and 0.064 Å, respectively) in the asymmetric unit. In the crystal, N-H...N hydrogen bonds link the molecules into C(7) chains of alternating A and B molecules propagating along the a-axis direction. The crystal used for the data collection was found to be a racemic twin.

Related literature top

For a related structure, see: Ge et al. (2012).

Experimental top

The title compound 3-(cyanomethyl)indole-4-chlorine was purchased commercially from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). and were used as received without further purification. Colourles prisms were obstained by slow evaporation of a methanol solution.

Refinement top

Positional parameters of all H atoms were calculated geometrically and the H atoms were set to ride the C atoms and N atoms to which they are bonded, with Uĩso~(H)= 1.2 Uĩso~(C, N).C—H atoms were included with bond distances ranging from 0.93 to 0.97 Å. Amide N—H hydrogen atoms were included witha distance set to 0.86 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure from the a axis. Hydrogen bonds are shown as dashed lines.
2-(4-Chloro-1H-indol-3-yl)acetonitrile top
Crystal data top
C10H7ClN2F(000) = 784
Mr = 190.63Dx = 1.429 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4057 reflections
a = 7.5091 (15) Åθ = 2.5–27.5°
b = 11.041 (2) ŵ = 0.38 mm1
c = 21.380 (4) ÅT = 293 K
V = 1772.6 (6) Å3Prism, colourless
Z = 80.33 × 0.25 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2753 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
graphiteθmax = 27.5°, θmin = 3.3°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.893, Tmax = 0.927l = 2727
17075 measured reflections2 standard reflections every 150 reflections
4057 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1573P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
4057 reflectionsΔρmin = 0.22 e Å3
236 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1968 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.66 (10)
Crystal data top
C10H7ClN2V = 1772.6 (6) Å3
Mr = 190.63Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 7.5091 (15) ŵ = 0.38 mm1
b = 11.041 (2) ÅT = 293 K
c = 21.380 (4) Å0.33 × 0.25 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2753 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.058
Tmin = 0.893, Tmax = 0.927θmax = 27.5°
17075 measured reflections2 standard reflections every 150 reflections
4057 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.22 e Å3
4057 reflectionsAbsolute structure: Flack (1983), 1968 Friedel pairs
236 parametersFlack parameter: 0.66 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57185 (18)0.47362 (9)0.10226 (5)0.0585 (3)
N10.3359 (6)0.4908 (3)0.1147 (2)0.0451 (11)
H1A0.30060.47430.15200.054*
N30.4392 (5)0.9029 (3)0.05314 (18)0.0781 (11)
C10.3547 (5)0.6055 (3)0.0894 (2)0.0470 (11)
H1B0.32340.67730.10930.056*
C20.4252 (4)0.5977 (3)0.0317 (2)0.0372 (8)
C30.4428 (6)0.4720 (4)0.0164 (2)0.0356 (8)
C40.4979 (4)0.4026 (3)0.03431 (17)0.0399 (7)
C50.4984 (6)0.2769 (3)0.0313 (2)0.0528 (12)
H5A0.53750.23220.06560.063*
C60.4413 (6)0.2172 (4)0.0222 (3)0.0571 (13)
H6A0.44260.13300.02330.069*
C70.3829 (4)0.2803 (3)0.07360 (19)0.0521 (9)
H7A0.34500.24110.10970.062*
C80.3834 (5)0.4034 (3)0.0688 (2)0.0412 (10)
C90.4689 (6)0.7050 (3)0.00949 (18)0.0454 (10)
H9A0.58980.69710.02490.055*
H9B0.38940.70560.04520.055*
C100.4518 (6)0.8176 (3)0.0240 (2)0.0491 (10)
Cl20.31981 (19)1.02214 (9)0.39526 (5)0.0628 (4)
N20.0887 (6)1.0076 (3)0.1779 (2)0.0540 (13)
H2A0.04411.02320.14170.065*
N40.1867 (6)0.5920 (3)0.23876 (19)0.0798 (11)
C110.1204 (5)0.8969 (4)0.20034 (19)0.0454 (10)
H11A0.10480.82600.17750.054*
C120.1782 (4)0.9000 (3)0.26055 (19)0.0401 (8)
C130.1928 (6)1.0261 (4)0.2749 (2)0.0385 (9)
C140.2470 (4)1.0945 (3)0.32694 (17)0.0442 (8)
C150.2436 (6)1.2171 (3)0.3253 (2)0.0531 (11)
H15A0.28071.26080.36010.064*
C160.1853 (6)1.2786 (4)0.2721 (3)0.0618 (14)
H16A0.18401.36280.27200.074*
C170.1308 (4)1.2175 (4)0.2208 (2)0.0594 (10)
H17A0.08891.25940.18610.071*
C180.1377 (5)1.0878 (3)0.2203 (2)0.0422 (10)
C190.2208 (6)0.7932 (3)0.30169 (19)0.0468 (10)
H19A0.34170.80050.31720.056*
H19B0.14100.79260.33740.056*
C200.2024 (7)0.6794 (4)0.2670 (3)0.0579 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0658 (7)0.0684 (5)0.0413 (6)0.0070 (6)0.0135 (6)0.0086 (8)
N10.050 (3)0.056 (2)0.029 (3)0.0015 (13)0.004 (2)0.0031 (12)
N30.124 (3)0.050 (2)0.060 (2)0.011 (2)0.015 (2)0.0052 (17)
C10.037 (2)0.043 (2)0.061 (3)0.0015 (15)0.0014 (18)0.013 (2)
C20.0324 (18)0.0367 (19)0.042 (2)0.0052 (15)0.0034 (17)0.0017 (16)
C30.030 (2)0.0480 (19)0.029 (2)0.001 (2)0.0011 (15)0.004 (2)
C40.0335 (17)0.0480 (18)0.0383 (19)0.0033 (16)0.0004 (14)0.0022 (15)
C50.050 (2)0.037 (2)0.072 (3)0.0072 (18)0.005 (2)0.018 (2)
C60.050 (2)0.047 (2)0.074 (3)0.001 (2)0.008 (2)0.005 (2)
C70.049 (2)0.057 (2)0.051 (2)0.0046 (16)0.0075 (17)0.014 (2)
C80.042 (2)0.046 (2)0.036 (2)0.0043 (15)0.0130 (18)0.0005 (16)
C90.051 (2)0.045 (2)0.040 (2)0.0052 (17)0.0022 (19)0.0067 (16)
C100.064 (3)0.036 (2)0.047 (2)0.0061 (19)0.0045 (19)0.0002 (19)
Cl20.0702 (8)0.0734 (6)0.0447 (7)0.0137 (6)0.0164 (6)0.0136 (9)
N20.056 (3)0.071 (3)0.035 (3)0.0072 (15)0.009 (3)0.0068 (14)
N40.122 (3)0.043 (2)0.074 (3)0.005 (2)0.009 (2)0.0032 (18)
C110.050 (2)0.056 (2)0.030 (2)0.0035 (18)0.0019 (16)0.0035 (17)
C120.0360 (19)0.054 (2)0.031 (2)0.0018 (17)0.0026 (17)0.0042 (17)
C130.033 (2)0.0450 (18)0.038 (2)0.003 (2)0.0077 (16)0.000 (2)
C140.0391 (19)0.0499 (19)0.044 (2)0.0003 (17)0.0050 (16)0.0071 (17)
C150.048 (2)0.053 (2)0.058 (3)0.001 (2)0.006 (2)0.007 (2)
C160.066 (3)0.033 (2)0.087 (4)0.001 (2)0.022 (3)0.002 (2)
C170.051 (2)0.061 (2)0.066 (3)0.0055 (19)0.008 (2)0.023 (2)
C180.032 (2)0.041 (2)0.053 (3)0.0096 (15)0.002 (2)0.0007 (18)
C190.049 (2)0.045 (2)0.046 (3)0.0065 (17)0.0035 (19)0.0020 (17)
C200.075 (3)0.052 (2)0.046 (3)0.003 (2)0.009 (2)0.008 (2)
Geometric parameters (Å, °) top
Cl1—C41.742 (4)Cl2—C141.752 (4)
N1—C11.385 (5)N2—C181.319 (6)
N1—C81.421 (6)N2—C111.335 (5)
N1—H1A0.8600N2—H2A0.8601
N3—C101.132 (5)N4—C201.144 (6)
C1—C21.346 (5)C11—C121.359 (5)
C1—H1B0.9300C11—H11A0.9300
C2—C31.432 (4)C12—C131.430 (5)
C2—C91.511 (5)C12—C191.506 (5)
C3—C41.391 (5)C13—C141.405 (6)
C3—C81.424 (6)C13—C181.413 (6)
C4—C51.390 (5)C14—C151.354 (5)
C5—C61.388 (7)C15—C161.395 (7)
C5—H5A0.9300C15—H15A0.9300
C6—C71.373 (7)C16—C171.351 (7)
C6—H6A0.9300C16—H16A0.9300
C7—C81.364 (5)C17—C181.434 (6)
C7—H7A0.9300C17—H17A0.9300
C9—C101.441 (5)C19—C201.466 (6)
C9—H9A0.9700C19—H19A0.9700
C9—H9B0.9700C19—H19B0.9700
C1—N1—C8109.0 (4)C18—N2—C11108.5 (5)
C1—N1—H1A125.9C18—N2—H2A126.4
C8—N1—H1A125.1C11—N2—H2A125.2
C2—C1—N1109.9 (4)N2—C11—C12112.0 (4)
C2—C1—H1B125.1N2—C11—H11A124.0
N1—C1—H1B125.1C12—C11—H11A124.0
C1—C2—C3107.9 (3)C11—C12—C13104.6 (4)
C1—C2—C9124.7 (3)C11—C12—C19127.0 (3)
C3—C2—C9127.4 (4)C13—C12—C19128.4 (4)
C4—C3—C8114.4 (3)C14—C13—C18118.7 (4)
C4—C3—C2137.6 (4)C14—C13—C12135.7 (4)
C8—C3—C2107.9 (4)C18—C13—C12105.6 (4)
C3—C4—C5121.0 (3)C15—C14—C13120.7 (4)
C3—C4—Cl1119.8 (3)C15—C14—Cl2118.9 (3)
C5—C4—Cl1119.2 (3)C13—C14—Cl2120.4 (3)
C6—C5—C4120.7 (4)C14—C15—C16120.9 (4)
C6—C5—H5A119.6C14—C15—H15A119.5
C4—C5—H5A119.6C16—C15—H15A119.5
C7—C6—C5121.2 (4)C17—C16—C15120.9 (4)
C7—C6—H6A119.4C17—C16—H16A119.5
C5—C6—H6A119.4C15—C16—H16A119.5
C6—C7—C8116.4 (4)C16—C17—C18119.6 (4)
C6—C7—H7A121.8C16—C17—H17A120.2
C8—C7—H7A121.8C18—C17—H17A120.2
C7—C8—C3126.2 (4)N2—C18—C13109.1 (4)
C7—C8—N1128.6 (4)N2—C18—C17131.7 (4)
C3—C8—N1105.1 (3)C13—C18—C17119.0 (4)
C10—C9—C2111.5 (3)C20—C19—C12110.8 (4)
C10—C9—H9A109.3C20—C19—H19A109.5
C2—C9—H9A109.3C12—C19—H19A109.5
C10—C9—H9B109.3C20—C19—H19B109.5
C2—C9—H9B109.3C12—C19—H19B109.5
H9A—C9—H9B108.0H19A—C19—H19B108.1
N3—C10—C9176.5 (5)N4—C20—C19178.4 (5)
C8—N1—C1—C24.9 (5)C18—N2—C11—C125.0 (6)
N1—C1—C2—C33.9 (5)N2—C11—C12—C133.6 (5)
N1—C1—C2—C9178.4 (4)N2—C11—C12—C19177.7 (4)
C1—C2—C3—C4177.3 (5)C11—C12—C13—C14178.4 (5)
C9—C2—C3—C40.2 (8)C19—C12—C13—C140.3 (8)
C1—C2—C3—C81.5 (4)C11—C12—C13—C180.9 (4)
C9—C2—C3—C8179.1 (4)C19—C12—C13—C18179.6 (4)
C8—C3—C4—C52.0 (5)C18—C13—C14—C151.2 (6)
C2—C3—C4—C5179.2 (5)C12—C13—C14—C15179.6 (5)
C8—C3—C4—Cl1179.3 (3)C18—C13—C14—Cl2179.0 (3)
C2—C3—C4—Cl10.5 (7)C12—C13—C14—Cl20.3 (7)
C3—C4—C5—C61.0 (6)C13—C14—C15—C160.4 (6)
Cl1—C4—C5—C6179.7 (4)Cl2—C14—C15—C16179.5 (4)
C4—C5—C6—C70.0 (7)C14—C15—C16—C170.0 (7)
C5—C6—C7—C80.4 (6)C15—C16—C17—C181.8 (7)
C6—C7—C8—C31.7 (6)C11—N2—C18—C134.2 (6)
C6—C7—C8—N1177.9 (4)C11—N2—C18—C17179.0 (4)
C4—C3—C8—C72.5 (6)C14—C13—C18—N2178.5 (4)
C2—C3—C8—C7178.3 (4)C12—C13—C18—N22.0 (5)
C4—C3—C8—N1179.4 (4)C14—C13—C18—C173.0 (6)
C2—C3—C8—N11.4 (4)C12—C13—C18—C17177.5 (3)
C1—N1—C8—C7179.4 (4)C16—C17—C18—N2177.7 (5)
C1—N1—C8—C33.8 (5)C16—C17—C18—C133.4 (6)
C1—C2—C9—C108.9 (6)C11—C12—C19—C203.4 (6)
C3—C2—C9—C10173.9 (4)C13—C12—C19—C20174.9 (4)
C2—C9—C10—N321 (9)C12—C19—C20—N43(20)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.862.423.089 (6)135
N2—H2A···N3i0.862.213.058 (6)170
Symmetry codes: (i) x−1/2, −y+2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N40.862.423.089 (6)135
N2—H2A···N3i0.862.213.058 (6)170
Symmetry codes: (i) x−1/2, −y+2, z.
Acknowledgements top

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

references
References top

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Ge, Y.-H., Pan, M.-L., Xu, J. & Luo, Y.-H. (2012). Acta Cryst. E68, o141.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.