supplementary materials


hb6560 scheme

Acta Cryst. (2012). E68, o113    [ doi:10.1107/S1600536811052913 ]

3,3-Dimethyl-2-benzofuran-1(3H)-one

M. S. Siddegowda, R. J. Butcher, S. O. Yildirim, M. Akkurt, H. S. Yathirajan and A. R. Ramesha

Abstract top

In the title compound, C10H10O2, all the non-H atoms except the methyl C atoms lie on a crystallographic mirror plane. In the crystal, C-H...O hydrogen bonds link the molecules into zigzag chains running parallel to [100]. Weak [pi]-[pi] stacking interactions between the benzene rings [centroid-centroid distance = 3.9817 (5) Å] link the chains in the [010] direction.

Comment top

3,3-Dimethylisobenzofuran-1(3H)-one, (I), is used to synthesize 10,10-dimethylanthrone (Fun et al., 2010). It is a one of the intermediate for melitracenium chloride (Fun et al., 2011). We now report its stucture.

In the title molecule (I), (Fig. 1), a mirror plane passes through the remaining atoms of the molecule, except the atoms of two methyl groups which are mirror images of each other.

In the crystal, intermolecular C—H ··· O hydrogen bonds link molecules forming zigzag chains in the layer parallel to the (101) plane and along the a axis (Table 1, Fig. 2a,b,c). Furthermore, there exist weak π-π stacking interactions [Cg2···Cg2(2 - x, -1/2 + y, -z) = 3.9817 (5) Å, Cg2···Cg2(2 - x, 1/2 + y, -z) = 3.9817 (5) Å, Cg2···Cg2(2 - x, -y, -z) = 3.9817 (5) Å, Cg2···Cg2(2 - x, 1 - y, -z) = 3.9817 (5) Å] between the C1–C6 benzene rings along the [010] direction.

Related literature top

For related structures, see: Fun et al. (2010, 2011).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chemicals, Bengaluru, India. Colourless prisms of (I) were grown from toluene solution by slow evaporation (m.p.: 337–340 K).

Refinement top

All H atoms were added in calculated positions and refined as riding with C–H distances of 0.93 and 0.96 Å. The isotropic atomic displacement parameters of H atoms were fixed to 1.2 or 1.5 ×Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule (I) showing displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding of (I) down a axis.
[Figure 3] Fig. 3. View of the packing and hydrogen bonding of (I) down b axis.
[Figure 4] Fig. 4. View of the packing and hydrogen bonding of (I) down c axis.
3,3-Dimethyl-2-benzofuran-1(3H)-one top
Crystal data top
C10H10O2F(000) = 344
Mr = 162.18Dx = 1.297 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1444 reflections
a = 14.3537 (9) Åθ = 2.8–35.2°
b = 7.0069 (5) ŵ = 0.09 mm1
c = 8.2605 (5) ÅT = 123 K
V = 830.80 (9) Å3Prism, colourless
Z = 40.55 × 0.44 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1840 independent reflections
Radiation source: Enhance (Mo) X-ray Source1454 reflections with I > 2σ(I)
graphiteRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 35.2°, θmin = 2.8°
ω scansh = 022
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
k = 011
Tmin = 0.952, Tmax = 0.974l = 013
1840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0987P]
where P = (Fo2 + 2Fc2)/3
1840 reflections(Δ/σ)max < 0.001
71 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H10O2V = 830.80 (9) Å3
Mr = 162.18Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.3537 (9) ŵ = 0.09 mm1
b = 7.0069 (5) ÅT = 123 K
c = 8.2605 (5) Å0.55 × 0.44 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1840 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
1454 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.974Rint = 0.000
1840 measured reflectionsθmax = 35.2°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.30 e Å3
1840 reflectionsAbsolute structure: ?
71 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Absorption correction: XABS2 (Parkin et al., 1995); cubic fit to sinθ/λ - 24 parameters

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.99217 (7)0.250000.38584 (11)0.0216 (3)
O21.13652 (7)0.250000.28045 (13)0.0260 (3)
C10.90567 (9)0.250000.14603 (15)0.0159 (3)
C20.83829 (9)0.250000.02623 (16)0.0193 (3)
C30.86910 (10)0.250000.13404 (16)0.0211 (3)
C40.96384 (10)0.250000.17273 (16)0.0208 (3)
C51.03071 (9)0.250000.05143 (16)0.0192 (3)
C60.99948 (9)0.250000.10807 (15)0.0165 (3)
C71.05334 (9)0.250000.25962 (15)0.0189 (3)
C80.89464 (9)0.250000.32851 (15)0.0175 (3)
C90.84773 (7)0.07067 (15)0.39183 (12)0.0229 (3)
H20.775100.250000.051400.0230*
H30.825400.250000.217200.0250*
H40.982200.250000.280700.0250*
H51.094000.250000.075800.0230*
H9A0.880100.039600.351900.0340*
H9B0.784200.067400.355600.0340*
H9C0.849200.070800.508000.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (4)0.0326 (5)0.0136 (4)0.00000.0019 (4)0.0000
O20.0169 (4)0.0368 (6)0.0242 (5)0.00000.0042 (4)0.0000
C10.0169 (5)0.0170 (5)0.0137 (5)0.00000.0004 (4)0.0000
C20.0176 (5)0.0251 (6)0.0153 (5)0.00000.0002 (5)0.0000
C30.0220 (6)0.0270 (6)0.0143 (5)0.00000.0021 (5)0.0000
C40.0246 (6)0.0248 (6)0.0131 (5)0.00000.0025 (5)0.0000
C50.0185 (5)0.0213 (5)0.0177 (5)0.00000.0031 (5)0.0000
C60.0176 (5)0.0173 (5)0.0147 (5)0.00000.0003 (4)0.0000
C70.0182 (6)0.0214 (5)0.0172 (5)0.00000.0011 (5)0.0000
C80.0164 (5)0.0232 (6)0.0130 (5)0.00000.0007 (4)0.0000
C90.0259 (5)0.0244 (4)0.0185 (4)0.0011 (4)0.0028 (3)0.0028 (3)
Geometric parameters (Å, °) top
O1—C71.3631 (16)C6—C71.4714 (18)
O1—C81.4779 (16)C8—C91.5185 (13)
O2—C71.2063 (16)C8—C9i1.5185 (13)
C1—C21.3837 (18)C2—H20.9300
C1—C61.3826 (18)C3—H30.9300
C1—C81.5157 (18)C4—H40.9300
C2—C31.3958 (19)C5—H50.9300
C3—C41.397 (2)C9—H9A0.9600
C4—C51.3875 (19)C9—H9B0.9600
C5—C61.3917 (18)C9—H9C0.9600
C7—O1—C8111.41 (9)C1—C8—C9112.89 (7)
C2—C1—C6121.23 (12)C1—C8—C9i112.89 (7)
C2—C1—C8129.66 (12)C9—C8—C9i111.68 (10)
C6—C1—C8109.11 (11)C1—C2—H2121.00
C1—C2—C3117.19 (12)C3—C2—H2121.00
C2—C3—C4121.70 (12)C2—C3—H3119.00
C3—C4—C5120.54 (12)C4—C3—H3119.00
C4—C5—C6117.44 (12)C3—C4—H4120.00
C1—C6—C5121.90 (12)C5—C4—H4120.00
C1—C6—C7108.59 (11)C4—C5—H5121.00
C5—C6—C7129.51 (12)C6—C5—H5121.00
O1—C7—O2121.90 (12)C8—C9—H9A109.00
O1—C7—C6108.20 (11)C8—C9—H9B109.00
O2—C7—C6129.90 (12)C8—C9—H9C110.00
O1—C8—C1102.69 (10)H9A—C9—H9B109.00
O1—C8—C9108.04 (7)H9A—C9—H9C109.00
O1—C8—C9i108.04 (7)H9B—C9—H9C109.00
C7—O1—C8—C9119.51 (7)C8—C1—C6—C5180.00
C8—O1—C7—O2180.00C2—C1—C8—C963.92 (8)
C8—O1—C7—C60.00C1—C2—C3—C40.00
C7—O1—C8—C10.00C2—C3—C4—C50.00
C8—C1—C2—C3180.00C3—C4—C5—C60.00
C2—C1—C6—C50.00C4—C5—C6—C10.00
C2—C1—C6—C7180.00C4—C5—C6—C7180.00
C6—C1—C2—C30.00C1—C6—C7—O2180.00
C6—C1—C8—O10.00C5—C6—C7—O1180.00
C6—C1—C8—C9116.08 (8)C5—C6—C7—O20.00
C8—C1—C6—C70.00C1—C6—C7—O10.00
C2—C1—C8—O1180.00
Symmetry codes: (i) x, −y+1/2, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.433.3072 (17)158
Symmetry codes: (ii) x−1/2, −y+1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.433.3072 (17)158
Symmetry codes: (i) x−1/2, −y+1/2, −z+1/2.
Acknowledgements top

MSS thanks the University of Mysore for research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

references
References top

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808–o809.

Fun, H.-K., Hemamalini, M., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1725.

Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.