supplementary materials


hb6565 scheme

Acta Cryst. (2012). E68, m79-m80    [ doi:10.1107/S160053681105392X ]

Di-n-butylbis(N-ethyl-N-phenyldithiocarbamato-[kappa]S)tin(IV)

N. F. Kamaludin, I. Baba, N. Awang, M. I. Mohamed Tahir and E. R. T. Tiekink

Abstract top

The title compound, [Sn(C4H9)2(C9H10NS2)2], features a tetrahedrally coordinated SnIV atom; the dithiocarbamate ligands coordinate in a monodentate fashion, accompanied by two n-butyl chains. The non-coordinating thione S atoms are each proximate to the SnIV atom [3.0136 (7) and 2.9865 (8) Å], giving rise to distortions from the ideal geometry as evident in the wide C-Sn-C bond angle of 139.06 (12) °. In the crystal, C-H...S interactions lead to the formation of a linear supramolecular chain along the b axis. The chains are aligned into layers by C-H...[pi] interactions, and the layers stack along [001]. One of the ethyl groups is statistically disordered over two sets of sites.

Comment top

The potential use of organotin dithiocarbamates as anti-cancer agents, anti-microbials and insecticides, and as synthetic precursors for tin sulfide nanoparticles, has been reviewed recently (Tiekink, 2008). In connection with recent structural studies of organotin(IV) dithiocarbamates (Awang et al., 2010; Kamaludin et al., 2012), the analysis of the title compound, (I), was undertaken.

The molecular structure, Fig. 1, features Sn coordinated by two dithiocarbamate ligands and two α-C atoms of the n-butyl groups. The dithiocarbamate ligand coordinates essentially in a monodentate fashion, an assignment supported by the large disparity in the C—S bond distances, Table 1. The coordination geometry is based on a tetrahedron with the range of tetrahedral angles being 103.55 (8) to 139.06 (12) °. The wider angle, C19—Sn—C23, is ascribed to the influence of the proximate S2 and S4 atoms [Sn···S2 = 3.0136 (7) Å and Sn···S4 = 2.9865 (8) Å].

The crystal packing of (I) features linear supramolecular chains along the b axis that are sustained by C—H···S interactions, Fig. 2 and Table 2. These are connected into layers in the ab plane by C—H···π contacts, Fig. 3 and Table 2, and the layers stack along the c axis, Fig. 4.

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For related structures, see: Awang et al. (2010); Kamaludin et al. (2012).

Experimental top

The title compound was prepared using an in situ method. A mixture of ethanol (50 ml) and N-ethylaniline (30 mM) was added to an ammonia solution (0.25%). The solution was stirred for half an hour at approximately 277 K. Carbon disulfide (30 mM) was added drop-wise and stirring was continued for another 6–8 h at 277 K. Di-n-butyltin(IV) dichloride (30 mM), dissolved in ethanol (20 ml), was added and stirring continued for a further 3 h. The white precipitate that formed was filtered, washed with cold ethanol and dried in a vacuum desiccator. Recrystallization as colourless prisms was from its ethanol:ethyl acetate (1:1) solution. Yield: 32%. M.pt. 400–401 K. Elemental analysis. Found (calculated) for C26H38N2S4Sn: C, 50.72 (49.92); H 7.47 (6.12); N 4.22 (4.48); S 20.26 (20.50) %. IR (KBr): ν(C—H) 2954 s; ν(CN) 1488 s; ν(N—C) 1123 m; ν(CS) 1004 s; ν(Sn—S) 554 s cm-1. 13C NMR (CDCl3): δ (CS2) 203.25 p.p.m..

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The C11—C12 ethyl group was found to be disordered over two positions. The anisotropic displacement parameters for chemically equivalent atoms were constrained to be equivalent. From fractional refinement, the components were present in experimentally equivalent amounts and so were restrained to 0.5 in the final refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain in (I) mediated by C—H···S interactions (orange dashed lines) along the b axis.
[Figure 3] Fig. 3. A view of the supramolecular leyer in the ab plane in (I) mediated by C—H···S and C—H···π interactions shown as orange and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view of the crystal packing in projection down the b axis highlighting the stacking of layers along the c axis. One layer is highlighted in space filling mode.
Di-n-butylbis(N-ethyl-N-phenyldithiocarbamato- κS)tin(IV) top
Crystal data top
[Sn(C4H9)2(C9H10NS2)2]F(000) = 2576
Mr = 625.51Dx = 1.381 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8173 reflections
a = 23.9107 (7) Åθ = 2–29°
b = 11.9395 (4) ŵ = 1.14 mm1
c = 22.0117 (7) ÅT = 150 K
β = 106.766 (3)°Prism, colourless
V = 6016.8 (3) Å30.30 × 0.23 × 0.18 mm
Z = 8
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6072 independent reflections
Radiation source: fine-focus sealed tube5190 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 16.1952 pixels mm-1θmax = 26.3°, θmin = 2.2°
ω scansh = 2929
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1413
Tmin = 0.77, Tmax = 0.81l = 2727
18598 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0333P)2 + 5.9233P]
where P = (Fo2 + 2Fc2)/3
6072 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Sn(C4H9)2(C9H10NS2)2]V = 6016.8 (3) Å3
Mr = 625.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.9107 (7) ŵ = 1.14 mm1
b = 11.9395 (4) ÅT = 150 K
c = 22.0117 (7) Å0.30 × 0.23 × 0.18 mm
β = 106.766 (3)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
6072 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
5190 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.81Rint = 0.028
18598 measured reflectionsθmax = 26.3°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.56 e Å3
S = 1.03Δρmin = 0.48 e Å3
6072 reflectionsAbsolute structure: ?
310 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.350914 (7)0.637737 (15)0.469770 (8)0.02909 (7)
S10.27097 (3)0.68785 (6)0.37120 (3)0.03370 (15)
S20.27694 (3)0.44489 (6)0.40320 (3)0.04111 (18)
S30.36947 (3)0.84637 (6)0.47468 (3)0.03361 (15)
S40.45001 (3)0.71489 (6)0.57850 (4)0.04151 (17)
N10.19430 (9)0.53942 (18)0.30940 (10)0.0347 (5)
N20.44536 (10)0.93729 (19)0.57331 (10)0.0393 (6)
C10.24355 (11)0.5526 (2)0.35720 (12)0.0312 (6)
C20.16723 (13)0.4292 (2)0.29093 (14)0.0440 (7)
H2A0.12420.43730.27900.053*
H2B0.17900.37800.32780.053*
C30.1841 (2)0.3785 (3)0.23662 (18)0.0733 (11)
H3A0.16950.42540.19890.110*
H3B0.16720.30330.22800.110*
H3C0.22680.37340.24740.110*
C40.16445 (12)0.6349 (2)0.27415 (12)0.0349 (6)
C50.17429 (15)0.6669 (3)0.21794 (14)0.0539 (8)
H50.20180.62840.20190.065*
C60.14253 (18)0.7580 (3)0.18510 (16)0.0708 (12)
H60.14890.78220.14650.085*
C70.10248 (17)0.8124 (3)0.20787 (19)0.0690 (11)
H70.08070.87330.18490.083*
C80.09385 (15)0.7791 (3)0.26361 (18)0.0593 (9)
H80.06620.81730.27950.071*
C90.12471 (12)0.6910 (2)0.29703 (14)0.0407 (7)
H90.11860.66890.33610.049*
C100.42468 (11)0.8393 (2)0.54634 (12)0.0308 (6)
C11A0.5068 (3)0.9442 (6)0.6239 (3)0.0398 (12)0.50
H11A0.52560.86950.63030.048*0.50
H11B0.53250.99650.60940.048*0.50
C12A0.4972 (3)0.9855 (7)0.6843 (3)0.0581 (13)0.50
H12A0.47461.05510.67610.087*0.50
H12B0.53500.99940.71570.087*0.50
H12C0.47570.92880.70080.087*0.50
C11B0.4828 (3)0.9435 (6)0.6395 (3)0.0398 (12)0.50
H11C0.48510.86920.66000.048*0.50
H11D0.46630.99750.66380.048*0.50
C12B0.5423 (3)0.9804 (7)0.6389 (3)0.0581 (13)0.50
H12D0.55790.92760.61380.087*0.50
H12E0.56820.98280.68240.087*0.50
H12F0.53991.05520.61990.087*0.50
C130.41974 (12)1.0434 (2)0.54745 (11)0.0353 (6)
C140.44872 (14)1.1138 (2)0.51730 (13)0.0445 (7)
H140.48551.09260.51250.053*
C150.42409 (16)1.2157 (3)0.49397 (14)0.0520 (8)
H150.44381.26430.47280.062*
C160.37155 (16)1.2461 (3)0.50135 (15)0.0560 (9)
H160.35511.31660.48580.067*
C170.34203 (15)1.1760 (3)0.53109 (15)0.0536 (8)
H170.30531.19790.53570.064*
C180.36608 (13)1.0733 (2)0.55440 (13)0.0426 (7)
H180.34591.02420.57480.051*
C190.30720 (12)0.6108 (2)0.54046 (12)0.0353 (6)
H19A0.30930.68090.56510.042*
H19B0.26550.59600.51880.042*
C200.33049 (14)0.5158 (2)0.58677 (14)0.0453 (7)
H20A0.37260.52820.60760.054*
H20B0.32640.44450.56300.054*
C210.29889 (14)0.5056 (3)0.63748 (15)0.0522 (8)
H21A0.30120.57820.65980.063*
H21B0.25710.48930.61670.063*
C220.3237 (2)0.4151 (4)0.6857 (2)0.0867 (14)
H22A0.31920.34210.66440.130*
H22B0.30290.41470.71800.130*
H22C0.36530.42970.70590.130*
C230.41798 (13)0.5619 (3)0.43672 (15)0.0491 (8)
H23A0.45000.53670.47370.059*
H23B0.40180.49500.41110.059*
C240.44233 (16)0.6405 (3)0.39730 (17)0.0667 (11)
H24A0.41030.66250.35950.080*
H24B0.45610.70920.42240.080*
C250.49163 (16)0.5944 (4)0.37556 (19)0.0742 (11)
H25A0.47790.52720.34910.089*
H25B0.52360.57110.41300.089*
C260.5151 (2)0.6791 (6)0.3374 (2)0.118 (2)
H26A0.48240.71930.30840.177*
H26B0.53740.64000.31290.177*
H26C0.54050.73260.36640.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02392 (10)0.02876 (11)0.03314 (10)0.00316 (7)0.00594 (7)0.00012 (7)
S10.0307 (3)0.0300 (4)0.0355 (3)0.0002 (3)0.0018 (3)0.0018 (3)
S20.0370 (4)0.0293 (4)0.0491 (4)0.0066 (3)0.0001 (3)0.0014 (3)
S30.0316 (3)0.0305 (4)0.0322 (3)0.0003 (3)0.0012 (3)0.0019 (3)
S40.0348 (4)0.0326 (4)0.0481 (4)0.0046 (3)0.0025 (3)0.0080 (3)
N10.0340 (12)0.0319 (12)0.0335 (11)0.0010 (10)0.0022 (10)0.0010 (9)
N20.0438 (14)0.0307 (13)0.0316 (11)0.0046 (11)0.0078 (10)0.0007 (9)
C10.0284 (13)0.0325 (15)0.0312 (13)0.0031 (11)0.0065 (11)0.0019 (11)
C20.0418 (16)0.0386 (17)0.0447 (16)0.0045 (14)0.0017 (13)0.0042 (13)
C30.096 (3)0.058 (2)0.067 (2)0.000 (2)0.024 (2)0.0200 (18)
C40.0313 (14)0.0354 (15)0.0307 (13)0.0058 (12)0.0027 (11)0.0046 (11)
C50.0498 (19)0.068 (2)0.0412 (17)0.0155 (17)0.0085 (14)0.0062 (15)
C60.075 (3)0.080 (3)0.0427 (19)0.034 (2)0.0072 (18)0.0293 (18)
C70.060 (2)0.048 (2)0.075 (3)0.0078 (19)0.018 (2)0.0238 (19)
C80.0477 (19)0.0428 (19)0.073 (2)0.0052 (16)0.0060 (17)0.0085 (17)
C90.0377 (15)0.0351 (16)0.0432 (16)0.0002 (13)0.0021 (13)0.0061 (13)
C100.0267 (13)0.0324 (15)0.0316 (13)0.0022 (11)0.0056 (11)0.0020 (11)
C11A0.030 (4)0.037 (2)0.043 (3)0.001 (3)0.004 (2)0.000 (2)
C12A0.040 (3)0.082 (4)0.041 (2)0.009 (3)0.0066 (19)0.006 (2)
C11B0.030 (4)0.037 (2)0.043 (3)0.001 (3)0.004 (2)0.000 (2)
C12B0.040 (3)0.082 (4)0.041 (2)0.009 (3)0.0066 (19)0.006 (2)
C130.0468 (16)0.0295 (15)0.0250 (12)0.0067 (13)0.0031 (12)0.0014 (10)
C140.0568 (19)0.0410 (17)0.0368 (15)0.0125 (15)0.0151 (14)0.0006 (12)
C150.076 (2)0.0409 (18)0.0442 (17)0.0133 (17)0.0249 (16)0.0091 (14)
C160.081 (2)0.0412 (19)0.0437 (18)0.0255 (18)0.0145 (17)0.0128 (14)
C170.054 (2)0.055 (2)0.0503 (18)0.0207 (17)0.0128 (16)0.0012 (16)
C180.0473 (17)0.0386 (17)0.0381 (15)0.0022 (14)0.0064 (13)0.0009 (12)
C190.0322 (14)0.0377 (16)0.0382 (14)0.0024 (12)0.0138 (12)0.0016 (12)
C200.0505 (18)0.0354 (17)0.0568 (18)0.0063 (14)0.0265 (15)0.0070 (13)
C210.0510 (19)0.052 (2)0.0594 (19)0.0011 (16)0.0261 (16)0.0120 (15)
C220.099 (3)0.079 (3)0.098 (3)0.015 (3)0.054 (3)0.044 (3)
C230.0339 (15)0.052 (2)0.065 (2)0.0051 (14)0.0197 (15)0.0096 (15)
C240.053 (2)0.095 (3)0.059 (2)0.019 (2)0.0271 (18)0.0022 (19)
C250.053 (2)0.105 (3)0.071 (2)0.002 (2)0.028 (2)0.026 (2)
C260.094 (4)0.199 (6)0.078 (3)0.025 (4)0.054 (3)0.034 (4)
Geometric parameters (Å, °) top
Sn—S12.5153 (7)C11B—H11D0.9900
Sn—S32.5270 (7)C12B—H12D0.9800
Sn—C192.134 (2)C12B—H12E0.9800
Sn—C232.143 (3)C12B—H12F0.9800
S1—C11.736 (3)C13—C141.376 (4)
S2—C11.689 (3)C13—C181.382 (4)
S3—C101.743 (3)C14—C151.384 (4)
S4—C101.682 (3)C14—H140.9500
N1—C11.343 (3)C15—C161.362 (5)
N1—C41.446 (3)C15—H150.9500
N1—C21.471 (3)C16—C171.376 (5)
N2—C101.340 (3)C16—H160.9500
N2—C131.450 (3)C17—C181.389 (4)
N2—C11B1.476 (7)C17—H170.9500
N2—C11A1.569 (7)C18—H180.9500
C2—C31.496 (4)C19—C201.519 (4)
C2—H2A0.9900C19—H19A0.9900
C2—H2B0.9900C19—H19B0.9900
C3—H3A0.9800C20—C211.523 (4)
C3—H3B0.9800C20—H20A0.9900
C3—H3C0.9800C20—H20B0.9900
C4—C91.372 (4)C21—C221.511 (5)
C4—C51.379 (4)C21—H21A0.9900
C5—C61.402 (5)C21—H21B0.9900
C5—H50.9500C22—H22A0.9800
C6—C71.367 (6)C22—H22B0.9800
C6—H60.9500C22—H22C0.9800
C7—C81.361 (5)C23—C241.505 (5)
C7—H70.9500C23—H23A0.9900
C8—C91.371 (4)C23—H23B0.9900
C8—H80.9500C24—C251.499 (4)
C9—H90.9500C24—H24A0.9900
C11A—C12A1.499 (9)C24—H24B0.9900
C11A—H11A0.9900C25—C261.521 (6)
C11A—H11B0.9900C25—H25A0.9900
C12A—H12A0.9800C25—H25B0.9900
C12A—H12B0.9800C26—H26A0.9800
C12A—H12C0.9800C26—H26B0.9800
C11B—C12B1.493 (9)C26—H26C0.9800
C11B—H11C0.9900
C19—Sn—C23139.06 (12)H12D—C12B—H12F109.5
C19—Sn—S1104.75 (8)H12E—C12B—H12F109.5
C23—Sn—S1105.34 (9)C14—C13—C18120.5 (3)
C19—Sn—S3103.55 (8)C14—C13—N2120.6 (3)
C23—Sn—S3106.96 (9)C18—C13—N2118.9 (3)
S1—Sn—S383.27 (2)C13—C14—C15119.8 (3)
C1—S1—Sn94.94 (9)C13—C14—H14120.1
C10—S3—Sn93.96 (9)C15—C14—H14120.1
C1—N1—C4120.9 (2)C16—C15—C14119.9 (3)
C1—N1—C2122.5 (2)C16—C15—H15120.0
C4—N1—C2116.6 (2)C14—C15—H15120.0
C10—N2—C13121.9 (2)C15—C16—C17120.8 (3)
C10—N2—C11B121.5 (3)C15—C16—H16119.6
C13—N2—C11B114.3 (3)C17—C16—H16119.6
C10—N2—C11A120.7 (3)C16—C17—C18119.9 (3)
C13—N2—C11A115.8 (3)C16—C17—H17120.1
N1—C1—S2122.4 (2)C18—C17—H17120.1
N1—C1—S1116.69 (19)C13—C18—C17119.1 (3)
S2—C1—S1120.86 (15)C13—C18—H18120.5
N1—C2—C3112.6 (3)C17—C18—H18120.5
N1—C2—H2A109.1C20—C19—Sn116.10 (18)
C3—C2—H2A109.1C20—C19—H19A108.3
N1—C2—H2B109.1Sn—C19—H19A108.3
C3—C2—H2B109.1C20—C19—H19B108.3
H2A—C2—H2B107.8Sn—C19—H19B108.3
C2—C3—H3A109.5H19A—C19—H19B107.4
C2—C3—H3B109.5C19—C20—C21112.9 (2)
H3A—C3—H3B109.5C19—C20—H20A109.0
C2—C3—H3C109.5C21—C20—H20A109.0
H3A—C3—H3C109.5C19—C20—H20B109.0
H3B—C3—H3C109.5C21—C20—H20B109.0
C9—C4—C5120.6 (3)H20A—C20—H20B107.8
C9—C4—N1118.4 (2)C22—C21—C20113.2 (3)
C5—C4—N1121.0 (3)C22—C21—H21A108.9
C4—C5—C6118.1 (3)C20—C21—H21A108.9
C4—C5—H5120.9C22—C21—H21B108.9
C6—C5—H5120.9C20—C21—H21B108.9
C7—C6—C5120.8 (3)H21A—C21—H21B107.7
C7—C6—H6119.6C21—C22—H22A109.5
C5—C6—H6119.6C21—C22—H22B109.5
C8—C7—C6119.8 (3)H22A—C22—H22B109.5
C8—C7—H7120.1C21—C22—H22C109.5
C6—C7—H7120.1H22A—C22—H22C109.5
C7—C8—C9120.6 (4)H22B—C22—H22C109.5
C7—C8—H8119.7C24—C23—Sn112.6 (2)
C9—C8—H8119.7C24—C23—H23A109.1
C8—C9—C4120.1 (3)Sn—C23—H23A109.1
C8—C9—H9120.0C24—C23—H23B109.1
C4—C9—H9120.0Sn—C23—H23B109.1
N2—C10—S4122.87 (19)H23A—C23—H23B107.8
N2—C10—S3116.46 (19)C25—C24—C23115.2 (3)
S4—C10—S3120.68 (16)C25—C24—H24A108.5
C12A—C11A—N2107.1 (5)C23—C24—H24A108.5
C12A—C11A—H11A110.3C25—C24—H24B108.5
N2—C11A—H11A110.3C23—C24—H24B108.5
C12A—C11A—H11B110.3H24A—C24—H24B107.5
N2—C11A—H11B110.3C24—C25—C26112.4 (4)
H11A—C11A—H11B108.5C24—C25—H25A109.1
N2—C11B—C12B108.3 (5)C26—C25—H25A109.1
N2—C11B—H11C110.0C24—C25—H25B109.1
C12B—C11B—H11C110.0C26—C25—H25B109.1
N2—C11B—H11D110.0H25A—C25—H25B107.9
C12B—C11B—H11D110.0C25—C26—H26A109.5
H11C—C11B—H11D108.4C25—C26—H26B109.5
C11B—C12B—H12D109.5H26A—C26—H26B109.5
C11B—C12B—H12E109.5C25—C26—H26C109.5
H12D—C12B—H12E109.5H26A—C26—H26C109.5
C11B—C12B—H12F109.5H26B—C26—H26C109.5
C19—Sn—S1—C173.60 (11)Sn—S3—C10—N2172.91 (19)
C23—Sn—S1—C178.31 (12)Sn—S3—C10—S47.43 (16)
S3—Sn—S1—C1175.89 (9)C10—N2—C11A—C12A119.0 (5)
C19—Sn—S3—C1073.17 (12)C13—N2—C11A—C12A75.0 (6)
C23—Sn—S3—C1079.19 (13)C11B—N2—C11A—C12A18.7 (8)
S1—Sn—S3—C10176.77 (9)C10—N2—C11B—C12B113.3 (5)
C4—N1—C1—S2175.18 (19)C13—N2—C11B—C12B83.7 (6)
C2—N1—C1—S23.5 (4)C11A—N2—C11B—C12B16.1 (8)
C4—N1—C1—S13.3 (3)C10—N2—C13—C14107.8 (3)
C2—N1—C1—S1178.0 (2)C11B—N2—C13—C1489.2 (4)
Sn—S1—C1—N1174.20 (19)C11A—N2—C13—C1457.9 (4)
Sn—S1—C1—S24.30 (16)C10—N2—C13—C1873.1 (3)
C1—N1—C2—C396.6 (3)C11B—N2—C13—C1889.8 (4)
C4—N1—C2—C384.7 (3)C11A—N2—C13—C18121.1 (4)
C1—N1—C4—C986.6 (3)C18—C13—C14—C150.3 (4)
C2—N1—C4—C992.2 (3)N2—C13—C14—C15178.8 (3)
C1—N1—C4—C595.3 (3)C13—C14—C15—C160.5 (5)
C2—N1—C4—C585.9 (3)C14—C15—C16—C170.9 (5)
C9—C4—C5—C60.1 (4)C15—C16—C17—C180.5 (5)
N1—C4—C5—C6178.0 (3)C14—C13—C18—C170.7 (4)
C4—C5—C6—C70.8 (5)N2—C13—C18—C17178.4 (2)
C5—C6—C7—C81.0 (5)C16—C17—C18—C130.3 (5)
C6—C7—C8—C90.4 (5)C23—Sn—C19—C205.9 (3)
C7—C8—C9—C40.5 (5)S1—Sn—C19—C20142.0 (2)
C5—C4—C9—C80.8 (4)S3—Sn—C19—C20131.5 (2)
N1—C4—C9—C8177.4 (3)Sn—C19—C20—C21177.3 (2)
C13—N2—C10—S4175.0 (2)C19—C20—C21—C22177.1 (3)
C11B—N2—C10—S413.2 (5)C19—Sn—C23—C24162.4 (2)
C11A—N2—C10—S419.9 (4)S1—Sn—C23—C2461.6 (2)
C13—N2—C10—S35.4 (3)S3—Sn—C23—C2425.9 (3)
C11B—N2—C10—S3167.1 (3)Sn—C23—C24—C25176.9 (3)
C11A—N2—C10—S3159.7 (3)C23—C24—C25—C26178.6 (4)
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···S2i0.952.683.550 (4)152
C26—H26c···Cg1ii0.982.853.810 (5)165
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+5/2, z+1.
Table 1
Selected geometric parameters (Å)
top
Sn—S12.5153 (7)Sn—C192.134 (2)
Sn—S32.5270 (7)Sn—C232.143 (3)
Table 2
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···S2i0.952.683.550 (4)152
C26—H26c···Cg1ii0.982.853.810 (5)165
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+5/2, z+1.
Acknowledgements top

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010), Universiti Putra Malaysia and the University of Malaya for supporting this study.

references
References top

Awang, N., Baba, I., Yamin, B. M. & Ng, S. W. (2010). Acta Cryst. E66, m938.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kamaludin, N. F., Awang, N., Baba, I., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m62–m63.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.