supplementary materials


ld2038 scheme

Acta Cryst. (2012). E68, o242    [ doi:10.1107/S1600536811054341 ]

4,4'-Bipyridine-dimethylglyoxime (1/1)

Y. Yang, Z. Huang, H. Lv and A. Han

Abstract top

In the title compound, C10H8N2·C4H8N2O2, both the dimethylglyoxime and the 4,4'-bipyridine molecules have crystallographic Ci symmetry. The molecules stack along the a-axis direction with a dihedral angle of 20.4 (8)° between their planes. In the crystal, the components are linked by O-H...N hydrogen bonds into alternating chains along [120] and [1\overline20].

Comment top

Dimethylglyoxime (H2dmg) with its two oximate group (N–O–) is a suitable scaffold to construct metal-containing building blocks for extended supramolecular architectures. Several complexes of transition metals with this ligand and its derivatives have been reported (Malinovskii et al., 2004; Coropceanu et al., 2009). Moreover, the NO oxime group has a remarkable efficiency to mediate magnetic interactions when it acts as a bridging ligand (Cervera et al., 1997).

Starting from Mn(CH3COO)2 and H2dmg, and using 4,4'-dpy as a bridging ligand, we have aimed to prepare a complex with superior magnetic properties. However, the reaction resulted in a stoichiometric (1:1) molecular complex of dimethylglyoxime-4,4'-bipyridine.

In this structure, the molecules of H2dmg and 4,4'-dpy are linked through O—H···N hydrogen bonds into alternating chains (Fig. 2).

Related literature top

For the coordination modes of dimethylglyoxime, see: Malinovskii et al. (2004); Coropceanu et al. (2009). For its use in mediate magnetic interactions, see: Cervera et al. (1997).

Experimental top

Mn(CH3COO)2.4H2O (0.025 g, 0.1 mmol) in 5 ml of water and CH3COONa(0.016 g, 0.2 mmol) were added to a mixture of H2dmg (0.024 g, 0.2 mmol) and 4,4'-dpy in 10 ml of methanol. The reaction mixture was boiled in a crucible for ~10 min. The solvent was then evaporated and colorless crystals of the title compound were obtained.

Refinement top

Methyl H atoms were placed in calculated position with C—H=0.96 Å, and torsion angles were refined, Uiso(H)=1.5Ueq(C). The position of the O-bound H-atom was determined from a difference Fourier map and then geometrically restrained with O—H=0.82 Å, and Uiso(H)=1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H=0.93Å and refined in riding mode with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Heterosoric stacks of the molecules.
4,4'-Bipyridine–dimethylglyoxime (1/1) top
Crystal data top
C10H8N2·C4H8N2O2F(000) = 288
Mr = 272.31707.6(2)
Monoclinic, P21/cDx = 1.278 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7247 (17) ÅCell parameters from 1636 reflections
b = 7.1486 (14) Åθ = 2.4–27.5°
c = 11.502 (2) ŵ = 0.09 mm1
β = 99.44 (3)°T = 298 K
V = 707.6 (2) Å3Block, colourless
Z = 20.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1636 independent reflections
Radiation source: fine-focus sealed tube1265 reflections with I > 2σ(I)
graphiteRint = 0.040
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.982, Tmax = 0.987k = 99
9684 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1229P]
where P = (Fo2 + 2Fc2)/3
1636 reflections(Δ/σ)max = 0.021
93 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C10H8N2·C4H8N2O2V = 707.6 (2) Å3
Mr = 272.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7247 (17) ŵ = 0.09 mm1
b = 7.1486 (14) ÅT = 298 K
c = 11.502 (2) Å0.20 × 0.18 × 0.15 mm
β = 99.44 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1265 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.040
9684 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.13 e Å3
1636 reflectionsAbsolute structure: ?
93 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02851 (14)0.09220 (19)0.48302 (12)0.0464 (3)
O10.72158 (14)0.26180 (17)0.14282 (10)0.0699 (4)
H10.77400.17140.12960.105*
N10.14118 (15)0.43625 (18)0.41432 (12)0.0600 (4)
N20.62500 (14)0.31488 (17)0.03926 (12)0.0556 (4)
C50.04603 (17)0.1905 (2)0.38632 (14)0.0557 (4)
H50.13640.14290.34210.067*
C60.55111 (16)0.4662 (2)0.05327 (13)0.0518 (4)
C30.21126 (19)0.3451 (2)0.50901 (16)0.0652 (5)
H30.29970.39820.55270.078*
C20.16017 (18)0.1766 (2)0.54594 (15)0.0591 (4)
H20.21370.11900.61300.071*
C40.01328 (18)0.3583 (2)0.35553 (15)0.0605 (4)
H40.03910.42080.28990.073*
C70.5661 (2)0.5712 (3)0.16681 (15)0.0701 (5)
H7A0.54140.48970.22750.105*
H7B0.49580.67540.15780.105*
H7C0.67070.61580.18810.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (7)0.0475 (7)0.0486 (7)0.0018 (5)0.0062 (5)0.0049 (6)
O10.0727 (8)0.0700 (8)0.0608 (7)0.0253 (6)0.0076 (6)0.0006 (5)
N10.0600 (8)0.0521 (7)0.0671 (8)0.0065 (6)0.0081 (6)0.0017 (6)
N20.0527 (7)0.0553 (7)0.0560 (7)0.0087 (5)0.0001 (5)0.0000 (5)
C50.0513 (8)0.0572 (8)0.0550 (8)0.0064 (6)0.0020 (6)0.0017 (7)
C60.0473 (7)0.0539 (8)0.0529 (8)0.0050 (6)0.0042 (6)0.0030 (6)
C30.0583 (9)0.0607 (9)0.0723 (11)0.0125 (7)0.0024 (8)0.0045 (8)
C20.0548 (8)0.0562 (9)0.0614 (9)0.0035 (7)0.0049 (7)0.0018 (7)
C40.0621 (9)0.0570 (9)0.0596 (9)0.0021 (7)0.0020 (7)0.0063 (7)
C70.0760 (11)0.0732 (11)0.0567 (9)0.0180 (9)0.0026 (8)0.0097 (8)
Geometric parameters (Å, °) top
C1—C51.384 (2)C6—C6ii1.474 (3)
C1—C21.391 (2)C6—C71.493 (2)
C1—C1i1.484 (3)C3—C21.376 (2)
O1—N21.3941 (17)C3—H30.9300
O1—H10.8200C2—H20.9300
N1—C41.329 (2)C4—H40.9300
N1—C31.329 (2)C7—H7A0.9600
N2—C61.2831 (18)C7—H7B0.9600
C5—C41.376 (2)C7—H7C0.9600
C5—H50.9300
C5—C1—C2115.92 (14)C2—C3—H3118.2
C5—C1—C1i121.91 (15)C3—C2—C1120.06 (15)
C2—C1—C1i122.16 (16)C3—C2—H2120.0
N2—O1—H1109.5C1—C2—H2120.0
C4—N1—C3116.54 (14)N1—C4—C5123.68 (15)
C6—N2—O1111.59 (12)N1—C4—H4118.2
C4—C5—C1120.16 (14)C5—C4—H4118.2
C4—C5—H5119.9C6—C7—H7A109.5
C1—C5—H5119.9C6—C7—H7B109.5
N2—C6—C6ii114.82 (16)H7A—C7—H7B109.5
N2—C6—C7124.04 (14)C6—C7—H7C109.5
C6ii—C6—C7121.13 (16)H7A—C7—H7C109.5
N1—C3—C2123.61 (14)H7B—C7—H7C109.5
N1—C3—H3118.2
C2—C1—C5—C41.8 (2)N1—C3—C2—C10.1 (3)
C1i—C1—C5—C4177.95 (15)C5—C1—C2—C31.7 (2)
O1—N2—C6—C6ii178.74 (15)C1i—C1—C2—C3178.06 (16)
O1—N2—C6—C70.5 (2)C3—N1—C4—C51.3 (2)
C4—N1—C3—C21.4 (3)C1—C5—C4—N10.3 (3)
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1iii0.821.942.7459 (17)169.
Symmetry codes: (iii) −x+1, y−1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.942.7459 (17)169.
Symmetry codes: (i) −x+1, y−1/2, −z+1/2.
references
References top

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.

Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.

Coropceanu, E., Croitor, L., Gdaniec, M., Wicher, B. & Fonari, M. (2009). Inorg. Chim. Acta, 362, 2151–2158.

Malinovskii, S. T., Bologa, O. A., Coropceanu, E. B., Luboradzki, R. & Gerbeleu, N. V. (2004). Russ. J. Coord. Chem. 30, 339–345.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.