supplementary materials


mw2029 scheme

Acta Cryst. (2012). E68, m18    [ doi:10.1107/S160053681105152X ]

Bis([mu]-di-2-pyridyl disulfide-[kappa]3N,S:N')di-[mu]3-iodido-di-[mu]2-iodido-tetracopper(I)

Y.-H. Wang and X.-H. Zhu

Abstract top

In the centrosymmetric tetranuclear title compound, [Cu4I4(C10H8N2S2)2], there are two different CuI atoms with tetrahedral coordination geometries. One is chelated by a pyridine N atom and an S-donor from one di-2-pyridyl disulfide ligand and coordinated by two I atoms, while the second CuI atom is coordinated by a pyridine-N and three I atoms. Iodine bridges between the CuI atoms form a tetranuclear structure.

Comment top

Polynuclear CuI compounds with luminescent properties have been designed and synthesized by reaction of CuI cations and suitable bridging ligands (Ford et al., 1999). Flexible heterocyclic ligands containing nitrogen donors can form metal complexes with considerable structural diversity and reports of CuI complexes with such ligands have increased in recent years (Caradoc-Davies & Hanton, 2003; Rath et al., 1986; Song et al., 2003; Song, Sun & Yang, 2011; Song, Sun, Yang & Yang, 2011; Song, Sun, & Yang, 2011; Su et al., 1997). di-2-pyridyl disulfide is a interesting heterocyclic ligand. A number of metal complexes of it and related ligands have been reported (Bell et al., 2000; Delgado et al., 2007; Kadooka et al., 1976; Niu et al., 2007; Wu et al., 2011). The present study details the structure of a CuI adduct of di-2-pyridyl disulfide.

The title compound, (I), is a tetranuclear complex, [Cu4I4(L)2] having crystallographically-imposed centrosymmetry (Fig. 1). In the unique ligand, S(2) and N(1) chelate to Cu(1) while N(2) coordinates to Cu(2A). Doubly-bridging I2 and triply-bridging I1 serve to complete the formation of the tetranuclear core in which each copper adopts approximately tetrahedral geometry. Cu(1) is coordinated by a pyridine N atom and an S donor from one L ligand and two iodine atoms while Cu(2) is coordinated by a pyridine N atom from the second L ligand and three iodine atoms. The bond angles around Cu(2) range from 104.38 (4) to 114.42 (5)° and are normal for a slightly distorted tetrahedral geometry while Cu(1) exists in a more distorted tetrahedral environment with the angles around Cu(1) in the range 88.58 (17) to 122.55 (7)°. All the Cu—N and Cu—S bond distances are comparable with those of other tetrameric clusters (Rath et al., 1986; Song et al., 2003; Su et al., 1997). The Cu—I bond lengths show significant differences depending on the Cu(I) environment. Cu(2) bonds to three iodine atoms with Cu—I bond distances ranging from 2.6864 (15) to 2.7623 (17) Å, while Cu(1) bonds to two iodine atoms with equivalent shorter Cu—I bond distances averaging 2.5764 (14) Å. The Cu···Cu distance of 2.6648 (18) Å is shorter than the sum of their van der Waals radii (2.83 Å), indicating the existence of Cu···Cu interactions. Such short Cu···Cu separations have been observed in some complexes such as [Cu4I4(quin)4] [2.582 (10)Å](Rath et al., 1986), [Cu4I4(MPTQ)2] [2.607 (1)Å] (Su et al., 1997), [Cu4I4(C19H36N2S2)2]n [2.734 (2)Å] (Song, Sun & Yang, 2011), [Cu4I4(C15H12N2S)2] [2.743 (1)Å] (Song et al., 2003) and [CuI(bbbm)]n [2.7683 (9)Å] (Niu et al., 2007).

The tetrameric Cu4I4 core adopts a distorted chair-like structure which is defined by three Cu—I edges from different Cu2I2 moieties: the strictly planar Cu(2)—I(1A)—Cu(2A)—I(1) unit and the non-planar Cu(1)—I(2)—Cu(2)—I(1) and symmetry-related Cu(1A)—I( A)—Cu(2A)—I(1A) units. Similar results were also found in related tetranuclear complexes (Rath et al., 1986; Song et al., 2003; Su et al., 1997).

Related literature top

For the structures and luminescence properties of Cu(I) complexes, see: Caradoc-Davies & Hanton (2003); Ford et al. (1999); Rath et al. (1986); Song et al. (2003); Song, Sun & Yang (2011); Song, Sun, Yang & Yang (2011); Su et al. (1997). For metal complexes with di-2-pyridyl disulfide, see: Bell et al. (2000); Delgado et al. (2007); Kadooka et al. (1976); Niu et al. (2007); Wu et al. (2011).

Experimental top

The ligand di-2-pyridyl disulfide (22.0 mg, 0.1 mmol) in CHCl3 (3 ml) was added to CuI (17.8 mg, 0.1 mmol) dissolved in MeCN (5 ml). The reaction mixture was kept in the dark and allowed to evaporate slowly. Yellow block-shaped single crystals suitable for X-ray analysis were obtained in 58% yield. Analysis found: C 20.39, H 1,40, N 4.84%; calculated for C20H16Cu4I4N4S4: C 19.98, H 1.34, N 4.66%.

Refinement top

H atoms were placed in calculated positions and included as riding contributions with C—H distances of 0.94Å (aromatic H) and with Uiso= 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) shown with 30% probability displacement ellipsoids and small spheres for the H atoms.
Bis(µ-di-2-pyridyl disulfide-κ3N,S:N')di-µ3-iodido- di-µ2-iodido-tetracopper(I) top
Crystal data top
[Cu4I4(C10H8N2S2)2]F(000) = 2224
Mr = 1202.37Dx = 2.657 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 8826 reflections
a = 10.460 (6) Åθ = 3.0–27.5°
b = 14.434 (8) ŵ = 7.20 mm1
c = 19.908 (12) ÅT = 223 K
V = 3006 (3) Å3Block, yellow
Z = 40.38 × 0.11 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3410 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 14.63 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 913
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1118
Tmin = 0.171, Tmax = 0.533l = 2325
10455 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
3410 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu4I4(C10H8N2S2)2]V = 3006 (3) Å3
Mr = 1202.37Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.460 (6) ŵ = 7.20 mm1
b = 14.434 (8) ÅT = 223 K
c = 19.908 (12) Å0.38 × 0.11 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3410 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2944 reflections with I > 2σ(I)
Tmin = 0.171, Tmax = 0.533Rint = 0.041
10455 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.73 e Å3
S = 1.16Δρmin = 0.68 e Å3
3410 reflectionsAbsolute structure: ?
163 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.28885 (4)0.00696 (3)0.52344 (2)0.03779 (13)
I20.56758 (4)0.03336 (3)0.68154 (2)0.04152 (14)
Cu10.43879 (8)0.11605 (5)0.58888 (4)0.0440 (2)
Cu20.52112 (8)0.05428 (6)0.56063 (5)0.0430 (2)
S10.55004 (18)0.33204 (12)0.60075 (10)0.0472 (5)
S20.57511 (16)0.22524 (11)0.53450 (9)0.0381 (4)
N10.3452 (5)0.2256 (4)0.6339 (3)0.0409 (13)
N20.4533 (4)0.1941 (3)0.4210 (3)0.0300 (11)
C10.2348 (6)0.2116 (5)0.6675 (4)0.0504 (19)
H10.19600.15300.66440.061*
C20.1761 (7)0.2779 (6)0.7059 (4)0.058 (2)
H20.10020.26470.72930.069*
C30.2316 (7)0.3650 (6)0.7093 (4)0.057 (2)
H30.19330.41240.73470.069*
C40.3452 (7)0.3811 (5)0.6745 (4)0.0514 (19)
H40.38440.43970.67560.062*
C50.3986 (6)0.3093 (4)0.6386 (3)0.0400 (16)
C60.3900 (6)0.2177 (4)0.3649 (3)0.0374 (15)
H60.36370.17020.33570.045*
C70.3617 (6)0.3078 (4)0.3479 (4)0.0432 (17)
H70.31570.32150.30850.052*
C80.4027 (6)0.3779 (4)0.3903 (4)0.0424 (17)
H80.38600.44010.37960.051*
C90.4671 (6)0.3565 (4)0.4474 (4)0.0399 (16)
H90.49600.40310.47670.048*
C100.4893 (5)0.2629 (4)0.4615 (3)0.0307 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0346 (2)0.0420 (3)0.0368 (3)0.00164 (19)0.00135 (19)0.0036 (2)
I20.0539 (3)0.0378 (2)0.0329 (3)0.0041 (2)0.0081 (2)0.00119 (19)
Cu10.0558 (5)0.0339 (4)0.0423 (6)0.0019 (4)0.0071 (4)0.0047 (4)
Cu20.0515 (5)0.0329 (4)0.0447 (6)0.0009 (4)0.0026 (4)0.0002 (4)
S10.0593 (11)0.0411 (10)0.0411 (11)0.0087 (9)0.0065 (9)0.0111 (8)
S20.0420 (9)0.0368 (9)0.0354 (10)0.0018 (8)0.0076 (8)0.0033 (7)
N10.045 (3)0.041 (3)0.037 (4)0.008 (3)0.008 (3)0.001 (3)
N20.034 (3)0.027 (3)0.029 (3)0.001 (2)0.003 (2)0.001 (2)
C10.047 (4)0.059 (5)0.045 (5)0.002 (4)0.005 (3)0.004 (4)
C20.049 (4)0.089 (6)0.036 (5)0.016 (4)0.009 (4)0.011 (4)
C30.063 (5)0.060 (5)0.050 (5)0.028 (4)0.016 (4)0.015 (4)
C40.071 (5)0.044 (4)0.039 (5)0.014 (4)0.011 (4)0.008 (3)
C50.054 (4)0.037 (4)0.028 (4)0.006 (3)0.010 (3)0.003 (3)
C60.037 (3)0.041 (4)0.033 (4)0.005 (3)0.009 (3)0.005 (3)
C70.047 (4)0.039 (4)0.044 (4)0.017 (3)0.008 (3)0.004 (3)
C80.049 (4)0.034 (3)0.044 (4)0.014 (3)0.007 (3)0.002 (3)
C90.038 (3)0.039 (4)0.043 (4)0.004 (3)0.000 (3)0.007 (3)
C100.029 (3)0.029 (3)0.034 (4)0.001 (3)0.000 (3)0.005 (3)
Geometric parameters (Å, °) top
I1—Cu12.5760 (13)N2—Cu2i2.068 (5)
I1—Cu2i2.6868 (15)C1—C21.370 (10)
I1—Cu22.6892 (16)C1—H10.9400
I2—Cu12.5772 (13)C2—C31.385 (11)
I2—Cu22.7623 (17)C2—H20.9400
Cu1—N12.064 (5)C3—C41.395 (10)
Cu1—S22.385 (2)C3—H30.9400
Cu1—Cu22.6650 (18)C4—C51.377 (9)
Cu2—N2i2.068 (5)C4—H40.9400
Cu2—I1i2.6868 (15)C6—C71.377 (8)
Cu2—Cu2i2.912 (2)C6—H60.9400
S1—C51.785 (7)C7—C81.386 (9)
S1—S22.046 (3)C7—H70.9400
S2—C101.792 (6)C8—C91.357 (9)
N1—C51.334 (8)C8—H80.9400
N1—C11.350 (9)C9—C101.399 (8)
N2—C101.334 (7)C9—H90.9400
N2—C61.341 (7)
Cu1—I1—Cu2i73.10 (5)C1—N1—Cu1120.4 (5)
Cu1—I1—Cu260.77 (4)C10—N2—C6117.0 (5)
Cu2i—I1—Cu265.59 (5)C10—N2—Cu2i125.6 (4)
Cu1—I2—Cu259.76 (4)C6—N2—Cu2i117.4 (4)
N1—Cu1—S288.52 (17)N1—C1—C2123.7 (7)
N1—Cu1—I1113.53 (16)N1—C1—H1118.1
S2—Cu1—I1122.57 (7)C2—C1—H1118.1
N1—Cu1—I2106.96 (16)C1—C2—C3118.3 (8)
S2—Cu1—I2108.56 (6)C1—C2—H2120.9
I1—Cu1—I2113.40 (5)C3—C2—H2120.9
N1—Cu1—Cu2162.08 (17)C2—C3—C4118.9 (7)
S2—Cu1—Cu2108.70 (7)C2—C3—H3120.5
I1—Cu1—Cu261.71 (4)C4—C3—H3120.5
I2—Cu1—Cu263.57 (4)C5—C4—C3118.5 (7)
N2i—Cu2—Cu1154.75 (15)C5—C4—H4120.7
N2i—Cu2—I1i105.23 (13)C3—C4—H4120.7
Cu1—Cu2—I1i97.82 (4)N1—C5—C4123.2 (7)
N2i—Cu2—I1119.11 (13)N1—C5—S1120.5 (5)
Cu1—Cu2—I157.52 (3)C4—C5—S1116.2 (6)
I1i—Cu2—I1114.41 (5)N2—C6—C7123.5 (6)
N2i—Cu2—I2105.64 (15)N2—C6—H6118.3
Cu1—Cu2—I256.67 (3)C7—C6—H6118.3
I1i—Cu2—I2107.23 (5)C6—C7—C8118.2 (6)
I1—Cu2—I2104.38 (4)C6—C7—H7120.9
N2i—Cu2—Cu2i133.76 (15)C8—C7—H7120.9
Cu1—Cu2—Cu2i68.25 (5)C9—C8—C7119.9 (6)
I1i—Cu2—Cu2i57.25 (4)C9—C8—H8120.0
I1—Cu2—Cu2i57.17 (3)C7—C8—H8120.0
I2—Cu2—Cu2i120.18 (6)C8—C9—C10118.0 (6)
C5—S1—S2104.3 (2)C8—C9—H9121.0
C10—S2—S1103.3 (2)C10—C9—H9121.0
C10—S2—Cu1105.6 (2)N2—C10—C9123.4 (6)
S1—S2—Cu197.40 (10)N2—C10—S2114.0 (4)
C5—N1—C1117.3 (6)C9—C10—S2122.6 (5)
C5—N1—Cu1121.7 (5)
Cu2i—I1—Cu1—N1128.20 (18)I1—Cu1—S2—C1033.8 (2)
Cu2—I1—Cu1—N1160.76 (18)I2—Cu1—S2—C10169.2 (2)
Cu2i—I1—Cu1—S224.03 (6)Cu2—Cu1—S2—C10101.6 (2)
Cu2—I1—Cu1—S295.07 (7)N1—Cu1—S2—S122.68 (17)
Cu2i—I1—Cu1—I2109.45 (5)I1—Cu1—S2—S1139.91 (8)
Cu2—I1—Cu1—I238.41 (4)I2—Cu1—S2—S184.72 (9)
Cu2i—I1—Cu1—Cu271.04 (4)Cu2—Cu1—S2—S1152.27 (7)
Cu2—I2—Cu1—N1163.59 (17)S2—Cu1—N1—C519.2 (5)
Cu2—I2—Cu1—S2102.17 (6)I1—Cu1—N1—C5144.4 (4)
Cu2—I2—Cu1—I137.66 (4)I2—Cu1—N1—C589.8 (5)
N1—Cu1—Cu2—N2i11.1 (6)Cu2—Cu1—N1—C5145.1 (4)
S2—Cu1—Cu2—N2i152.3 (3)S2—Cu1—N1—C1169.7 (5)
I1—Cu1—Cu2—N2i90.1 (3)I1—Cu1—N1—C144.5 (6)
I2—Cu1—Cu2—N2i50.3 (3)I2—Cu1—N1—C181.3 (5)
N1—Cu1—Cu2—I1i167.0 (5)Cu2—Cu1—N1—C126.0 (9)
S2—Cu1—Cu2—I1i3.57 (6)C5—N1—C1—C20.4 (11)
I1—Cu1—Cu2—I1i114.03 (5)Cu1—N1—C1—C2171.2 (6)
I2—Cu1—Cu2—I1i105.52 (5)N1—C1—C2—C31.5 (12)
N1—Cu1—Cu2—I179.0 (5)C1—C2—C3—C40.9 (11)
S2—Cu1—Cu2—I1117.60 (7)C2—C3—C4—C50.7 (11)
I2—Cu1—Cu2—I1140.45 (3)C1—N1—C5—C41.4 (10)
N1—Cu1—Cu2—I261.4 (5)Cu1—N1—C5—C4172.8 (5)
S2—Cu1—Cu2—I2101.95 (7)C1—N1—C5—S1175.7 (5)
I1—Cu1—Cu2—I2140.45 (3)Cu1—N1—C5—S14.3 (7)
N1—Cu1—Cu2—Cu2i143.0 (5)C3—C4—C5—N11.9 (11)
S2—Cu1—Cu2—Cu2i53.58 (6)C3—C4—C5—S1175.3 (5)
I1—Cu1—Cu2—Cu2i64.02 (4)S2—S1—C5—N116.5 (6)
I2—Cu1—Cu2—Cu2i155.53 (5)S2—S1—C5—C4166.2 (5)
Cu1—I1—Cu2—N2i150.78 (17)C10—N2—C6—C70.1 (9)
Cu2i—I1—Cu2—N2i125.65 (17)Cu2i—N2—C6—C7177.3 (5)
Cu2i—I1—Cu2—Cu183.57 (5)N2—C6—C7—C81.2 (11)
Cu1—I1—Cu2—I1i83.57 (5)C6—C7—C8—C91.0 (10)
Cu2i—I1—Cu2—I1i0.0C7—C8—C9—C100.3 (10)
Cu1—I1—Cu2—I233.31 (3)C6—N2—C10—C91.6 (9)
Cu2i—I1—Cu2—I2116.88 (6)Cu2i—N2—C10—C9178.5 (4)
Cu1—I1—Cu2—Cu2i83.57 (5)C6—N2—C10—S2179.2 (4)
Cu1—I2—Cu2—N2i160.06 (14)Cu2i—N2—C10—S24.0 (6)
Cu1—I2—Cu2—I1i88.08 (5)C8—C9—C10—N21.7 (10)
Cu1—I2—Cu2—I133.68 (3)C8—C9—C10—S2179.1 (5)
Cu1—I2—Cu2—Cu2i26.43 (5)S1—S2—C10—N2157.5 (4)
C5—S1—S2—C1083.7 (3)Cu1—S2—C10—N255.7 (5)
C5—S1—S2—Cu124.3 (2)S1—S2—C10—C925.0 (6)
N1—Cu1—S2—C1083.4 (3)Cu1—S2—C10—C9126.7 (5)
Symmetry codes: (i) −x+1, −y, −z+1.
Acknowledgements top

The authors thank Suzhou University of Science and Technology for financial support.

references
References top

Bell, N. A., Gelbrich, T., Hursthouse, M. B., Light, M. E. & Wilson, A. (2000). Polyhedron, 19, 2539–2546.

Caradoc-Davies, P. L. & Hanton, L. R. (2003). Dalton Trans. pp. 1754–1758.

Delgado, S., Molina-Ontoria, A., Medina, M. E., Pastor, C. J., Jimenez-Aparicio, R. & Priego, J. L. (2007). Polyhedron, 26, 2817–2828.

Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625–3648.

Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.

Kadooka, M. M., Warner, L. G. & Seff, K. (1976). J. Am. Chem. Soc. 98, 7569–7578.

Niu, Y., Zhang, N., Hou, H., Zhu, Y., Tang, M. & Ng, S. W. (2007). J. Mol. Struct. 827, 195–200.

Rath, N. P., Holt, E. M. & Tanimura, K. (1986). J. Chem. Soc. Dalton Trans. pp. 2303–2310.

Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Song, R.-F., Sun, Y.-Y. & Yang, J. (2011). J. Inorg. Organomet. Polym. 21, 143–149.

Song, R.-F., Sun, Y.-Y., Yang, J. & Yang, X.-Y. (2011). J. Inorg. Organomet. Polym. 21, 237–243.

Song, R.-F., Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2003). CrystEngComm, 7, 249–254.

Su, C. Y., Kang, B.-S. & Sun, J. (1997). Chem. Lett. pp. 821–822.

Wu, S., Jiang, W., Li, F. & Liu, L. (2011). Acta Cryst. E67, m285.