supplementary materials


pv2487 scheme

Acta Cryst. (2012). E68, o14    [ doi:10.1107/S1600536811051294 ]

6-Chloro-1-methylindoline-2,3-dione

H. Q. Liu, W. Tang, D. C. Wang and P. K. Ou-yang

Abstract top

The title molecule, C9H6ClNO2, is essentially planar: the maximum deviation from the mean plane of the indoline ring is 0.020 (2) Å and the substituents do not deviate by more than 0.053 (2) Å from this plane. C-H...O hydrogen bonds help to consolidate the crystal structure.

Comment top

Halogenated derivatives of isatin have been reported to exhibit cytotoxic and antineoplastic activities (Vine et al., 2007; Matesic et al., 2008). As a part of our studies on the synthesis of isatin derivatives, the title compound was synthesized (Bouhfid et al. (2005)). We report herein the crystal structure of the title compound.

The title molecule (Fig. 1) is essentially planar with the maximum deviation of C4 atom from the mean-plane of indoline ring (N,C1–C8) is 0.020 (2) Å and the substituents do not deviate more than 0.053 (2) Å from this plane. In the crystal structure, intermolecular and intramolecular C—H···O hydrogen bonds helps to consolidate the crystal packing (Fig. 2 & Tab. 1).

Related literature top

The title compound is a halogenated derivative of isatin. For the cytotoxic and antineoplastic activity of halogenated derivatives of isatin, see: Vine et al. (2007); Matesic et al. (2008). For the preparation of the title compound, see: Bouhfid et al. (2005). For a related structure, see: Wu et al. (2011).

Experimental top

6-Chloroisatin (1.81 g, 0.01 mol) was reacted with iodomethane (0.02 mol) in the presence of K2CO3 (2.76 g, 0.02 mol) and tetrabutylammonium bromide (0.32 g, 0.001 mol) in DMF (60 ml). After 12 h stirring at room temperature, the precipitate was removed by filtration and purified by recrystallization from ethanol (m.p. 450–451 K; yield 67%). Yellow crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement top

All H atoms were placed geometrically at the distances C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. The intermolecular hydrogen bonds are shown as dashed lines.
6-Chloro-1-methylindoline-2,3-dione top
Crystal data top
C9H6ClNO2F(000) = 800
Mr = 195.60Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.077 (3) Åθ = 9–13°
b = 7.9390 (16) ŵ = 0.41 mm1
c = 16.673 (3) ÅT = 293 K
β = 101.95 (3)°Block, yellow
V = 1693.5 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 015
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.887, Tmax = 0.960l = 2020
3124 measured reflections3 standard reflections every 200 reflections
1557 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
1557 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C9H6ClNO2V = 1693.5 (6) Å3
Mr = 195.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.077 (3) ŵ = 0.41 mm1
b = 7.9390 (16) ÅT = 293 K
c = 16.673 (3) Å0.30 × 0.20 × 0.10 mm
β = 101.95 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1250 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.887, Tmax = 0.960θmax = 25.4°
3124 measured reflections3 standard reflections every 200 reflections
1557 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.27 e Å3
1557 reflectionsAbsolute structure: ?
119 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.44670 (4)0.16058 (8)0.34958 (3)0.0700 (3)
N0.64277 (11)0.39456 (19)0.62790 (9)0.0490 (4)
C10.62506 (13)0.3717 (2)0.54308 (11)0.0427 (4)
O10.84333 (11)0.63253 (19)0.57603 (13)0.0790 (5)
C20.54622 (13)0.2784 (2)0.49497 (11)0.0441 (4)
H2A0.49610.22250.51720.053*
O20.76431 (12)0.5344 (2)0.72436 (10)0.0801 (5)
C30.54593 (14)0.2728 (2)0.41247 (12)0.0492 (5)
C40.62028 (16)0.3525 (2)0.37645 (13)0.0552 (5)
H4A0.61800.34240.32050.066*
C50.69747 (15)0.4469 (2)0.42582 (13)0.0554 (5)
H5A0.74720.50330.40330.067*
C60.69983 (13)0.4564 (2)0.50844 (12)0.0484 (5)
C70.76899 (14)0.5415 (2)0.57711 (15)0.0579 (5)
C80.72891 (14)0.4939 (2)0.65333 (14)0.0579 (5)
C90.58013 (17)0.3220 (3)0.68150 (14)0.0608 (5)
H9A0.60960.35210.73730.091*
H9B0.57940.20160.67610.091*
H9C0.51000.36430.66660.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0696 (4)0.0753 (4)0.0577 (4)0.0114 (3)0.0042 (3)0.0050 (2)
N0.0434 (9)0.0508 (9)0.0522 (9)0.0023 (7)0.0088 (7)0.0046 (7)
C10.0372 (9)0.0385 (8)0.0526 (10)0.0041 (7)0.0095 (7)0.0015 (7)
O10.0522 (9)0.0643 (9)0.1197 (15)0.0190 (8)0.0158 (9)0.0066 (9)
C20.0394 (9)0.0423 (9)0.0509 (10)0.0021 (7)0.0100 (7)0.0035 (7)
O20.0701 (10)0.0856 (11)0.0755 (12)0.0061 (8)0.0060 (8)0.0214 (9)
C30.0455 (10)0.0446 (10)0.0544 (11)0.0033 (8)0.0031 (8)0.0022 (8)
C40.0631 (12)0.0558 (12)0.0481 (11)0.0060 (9)0.0143 (9)0.0089 (8)
C50.0535 (11)0.0511 (11)0.0673 (13)0.0018 (9)0.0253 (9)0.0131 (9)
C60.0384 (9)0.0385 (9)0.0690 (13)0.0007 (7)0.0126 (8)0.0029 (8)
C70.0377 (10)0.0444 (10)0.0900 (16)0.0023 (8)0.0098 (9)0.0042 (9)
C80.0433 (10)0.0534 (11)0.0715 (14)0.0020 (8)0.0009 (9)0.0132 (9)
C90.0596 (12)0.0710 (14)0.0530 (12)0.0004 (10)0.0141 (9)0.0037 (10)
Geometric parameters (Å, °) top
Cl—C31.7361 (19)C3—C41.396 (3)
N—C81.369 (2)C4—C51.383 (3)
N—C11.397 (2)C4—H4A0.9300
N—C91.451 (3)C5—C61.373 (3)
C1—C21.383 (2)C5—H5A0.9300
C1—C61.406 (2)C6—C71.468 (3)
O1—C71.215 (2)C7—C81.519 (3)
C2—C31.376 (3)C9—H9A0.9600
C2—H2A0.9300C9—H9B0.9600
O2—C81.222 (3)C9—H9C0.9600
C8—N—C1109.98 (16)C4—C5—H5A120.4
C8—N—C9124.86 (18)C5—C6—C1120.85 (18)
C1—N—C9125.16 (15)C5—C6—C7133.59 (17)
C2—C1—N127.17 (16)C1—C6—C7105.55 (17)
C2—C1—C6121.09 (17)O1—C7—C6128.9 (2)
N—C1—C6111.74 (16)O1—C7—C8125.2 (2)
C3—C2—C1116.40 (16)C6—C7—C8105.93 (16)
C3—C2—H2A121.8O2—C8—N125.0 (2)
C1—C2—H2A121.8O2—C8—C7128.2 (2)
C2—C3—C4123.89 (18)N—C8—C7106.77 (17)
C2—C3—Cl117.88 (14)N—C9—H9A109.5
C4—C3—Cl118.23 (15)N—C9—H9B109.5
C5—C4—C3118.50 (19)H9A—C9—H9B109.5
C5—C4—H4A120.8N—C9—H9C109.5
C3—C4—H4A120.8H9A—C9—H9C109.5
C6—C5—C4119.24 (17)H9B—C9—H9C109.5
C6—C5—H5A120.4
C8—N—C1—C2179.45 (16)C2—C1—C6—C7179.49 (15)
C9—N—C1—C20.2 (3)N—C1—C6—C70.97 (19)
C8—N—C1—C60.0 (2)C5—C6—C7—O12.2 (4)
C9—N—C1—C6179.27 (17)C1—C6—C7—O1178.19 (19)
N—C1—C2—C3179.06 (16)C5—C6—C7—C8178.04 (19)
C6—C1—C2—C30.4 (2)C1—C6—C7—C81.52 (19)
C1—C2—C3—C41.0 (3)C1—N—C8—O2179.21 (19)
C1—C2—C3—Cl178.72 (13)C9—N—C8—O20.0 (3)
C2—C3—C4—C51.9 (3)C1—N—C8—C71.0 (2)
Cl—C3—C4—C5177.82 (14)C9—N—C8—C7179.76 (16)
C3—C4—C5—C61.3 (3)O1—C7—C8—O21.6 (3)
C4—C5—C6—C10.0 (3)C6—C7—C8—O2178.7 (2)
C4—C5—C6—C7179.48 (19)O1—C7—C8—N178.14 (18)
C2—C1—C6—C50.9 (3)C6—C7—C8—N1.6 (2)
N—C1—C6—C5178.65 (16)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.503.419 (2)168
C9—H9A···O20.962.532.906 (3)103
Symmetry codes: (i) x−1/2, y−1/2, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.503.419 (2)168
Symmetry codes: (i) x−1/2, y−1/2, z.
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

references
References top

Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Matesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118–3124.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938.

Wu, W., Zheng, T., Cao, S. & Xiao, Z. (2011). Acta Cryst. E67, o246.