supplementary materials


pv2490 scheme

Acta Cryst. (2012). E68, o114    [ doi:10.1107/S1600536811052846 ]

4-Methoxy-3-nitrobiphenyl

X. Chao, X. Zhang, K. Wang, J. Ji and Q. Chen

Abstract top

In the title compound, C13H11NO3, the dihedral angle between the two benzene rings is 36.69 (2)° and the nitro and methyoxy groups are oriented at 29.12 (14) and 2.14 (12)° with respect to the benzene ring to which they are bonded.

Comment top

The tittle compound is used as an important intermediate in the synthesis of bifenazate which is recognized as an effective miticide (Pourali & Fatemi, 2010).

The bond lengths and angles in the title compound (Fig. 1) are similar to the corresponding bond lengths and angles reported for a closely related compound (Marques et al., 2008). In the title molecule, the torsion angle between the two benzene rings is 36.69 (2)° and the nitro (N1/O2/O3) and methyoxy (O1/C11) groups are oriented at 29.12 (14) and 2.14 (12)°, respectively, with respect to the benzene ring (C5–C10). The crystal structure is devoid of any intramolecular or intermolecular hydrogen bonds.

Related literature top

For background information and the synthetic procedure, see: Pourali & Fatemi (2010). For the crystal structure of a similar compound, see: Marques et al. (2008).

Experimental top

The title compound was prepared by a method reported in the literature (Pourali & Fatemi, 2010). A solution of 3-nitrobiphenyl-4-ol (2 g, 9.3 mmol) in acetone (20 ml) was added slowly to a solution of dimethyl sulfate (1.2 g, 18 mmol) in an ice bath. After stirring for 48 h at room tempeature, the solvent was evaporated on a rotary evaporator to yield the title compound. Colorless block of the title compound were grown in ethanol by slow slow evaporation of the solvent at room temperature.

Refinement top

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 and 0.97 Å for aryl and methyl H atoms, respectively, with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule; displacement ellipsoids are drawn at the 50% probability level.
4-Methoxy-3-nitrobiphenyl top
Crystal data top
C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.371 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7392 reflections
a = 7.2464 (14) Åθ = 2.8–28.6°
b = 14.416 (3) ŵ = 0.10 mm1
c = 21.270 (4) ÅT = 296 K
V = 2221.9 (7) Å3Block, colorless
Z = 80.20 × 0.18 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1767 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 25.5°, θmin = 1.9°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 1717
Tmin = 0.981, Tmax = 0.985l = 2513
23696 measured reflections3 standard reflections every 200 reflections
2067 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0647P)2 + 1.1253P]
where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H11NO3V = 2221.9 (7) Å3
Mr = 229.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2464 (14) ŵ = 0.10 mm1
b = 14.416 (3) ÅT = 296 K
c = 21.270 (4) Å0.20 × 0.18 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1767 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.981, Tmax = 0.985θmax = 25.5°
23696 measured reflections3 standard reflections every 200 reflections
2067 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.134Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.21 e Å3
2067 reflectionsAbsolute structure: ?
155 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0839 (2)0.29025 (9)0.20268 (6)0.0550 (4)
C60.0647 (2)0.25993 (12)0.37180 (9)0.0440 (4)
H60.04370.21180.40000.053*
C100.1357 (2)0.41652 (12)0.35023 (9)0.0470 (4)
H100.16290.47620.36400.056*
C50.1047 (2)0.34788 (12)0.39446 (9)0.0429 (4)
N10.0116 (2)0.14832 (10)0.28966 (8)0.0510 (4)
C70.0557 (2)0.24306 (11)0.30850 (9)0.0435 (4)
C80.0879 (2)0.31220 (12)0.26371 (8)0.0433 (4)
C90.1278 (3)0.39972 (12)0.28690 (9)0.0469 (4)
H90.14960.44810.25890.056*
C20.1145 (2)0.36642 (12)0.46247 (9)0.0460 (4)
O30.0541 (3)0.08624 (9)0.32547 (8)0.0732 (5)
C110.1229 (3)0.36171 (14)0.15871 (9)0.0558 (5)
H11A0.03160.40970.16230.084*
H11B0.12080.33660.11690.084*
H11C0.24280.38720.16720.084*
O20.0705 (3)0.13539 (11)0.24097 (9)0.0828 (6)
C30.2432 (3)0.42742 (15)0.48667 (10)0.0614 (6)
H30.32260.45830.45940.074*
C10.0019 (3)0.32329 (14)0.50488 (10)0.0586 (5)
H10.09060.28200.49020.070*
C40.2562 (4)0.44336 (18)0.55029 (11)0.0723 (6)
H40.34440.48460.56540.087*
C120.0112 (3)0.34047 (17)0.56840 (11)0.0670 (6)
H120.06980.31140.59600.080*
C130.1418 (3)0.39961 (17)0.59124 (11)0.0692 (6)
H130.15240.40980.63430.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0698 (9)0.0411 (7)0.0541 (8)0.0008 (6)0.0041 (7)0.0009 (6)
C60.0395 (9)0.0348 (8)0.0578 (11)0.0008 (7)0.0014 (8)0.0070 (8)
C100.0436 (10)0.0329 (8)0.0645 (11)0.0037 (7)0.0048 (8)0.0016 (8)
C50.0334 (8)0.0375 (9)0.0578 (10)0.0006 (7)0.0001 (7)0.0015 (8)
N10.0559 (10)0.0314 (8)0.0657 (10)0.0010 (7)0.0037 (8)0.0006 (7)
C70.0377 (9)0.0298 (8)0.0628 (11)0.0008 (7)0.0002 (8)0.0000 (7)
C80.0387 (9)0.0344 (8)0.0569 (11)0.0036 (7)0.0040 (8)0.0029 (7)
C90.0465 (10)0.0355 (9)0.0587 (11)0.0009 (8)0.0056 (8)0.0072 (8)
C20.0397 (9)0.0406 (9)0.0577 (11)0.0038 (7)0.0003 (8)0.0010 (8)
O30.1017 (13)0.0329 (7)0.0850 (11)0.0030 (7)0.0018 (9)0.0080 (7)
C110.0595 (12)0.0506 (11)0.0572 (11)0.0030 (9)0.0050 (9)0.0065 (9)
O20.1095 (15)0.0509 (9)0.0879 (12)0.0175 (9)0.0282 (11)0.0060 (8)
C30.0554 (12)0.0646 (13)0.0642 (12)0.0117 (10)0.0057 (10)0.0110 (10)
C10.0580 (12)0.0539 (11)0.0638 (12)0.0048 (10)0.0011 (10)0.0083 (9)
C40.0679 (14)0.0767 (15)0.0722 (14)0.0068 (12)0.0060 (12)0.0211 (12)
C120.0643 (14)0.0740 (15)0.0628 (13)0.0079 (12)0.0098 (11)0.0143 (11)
C130.0696 (15)0.0787 (15)0.0593 (13)0.0147 (13)0.0017 (11)0.0035 (11)
Geometric parameters (Å, °) top
O1—C81.336 (2)C2—C11.383 (3)
O1—C111.420 (2)C2—C31.381 (3)
C6—C71.370 (3)C11—H11A0.9600
C6—C51.387 (2)C11—H11B0.9600
C6—H60.9300C11—H11C0.9600
C10—C91.370 (3)C3—C41.376 (3)
C10—C51.384 (2)C3—H30.9300
C10—H100.9300C1—C121.377 (3)
C5—C21.473 (3)C1—H10.9300
N1—O21.209 (2)C4—C131.358 (3)
N1—O31.215 (2)C4—H40.9300
N1—C71.459 (2)C12—C131.363 (4)
C7—C81.398 (2)C12—H120.9300
C8—C91.385 (3)C13—H130.9300
C9—H90.9300
C8—O1—C11117.63 (15)C1—C2—C5121.99 (17)
C7—C6—C5120.92 (16)C3—C2—C5120.93 (17)
C7—C6—H6119.5O1—C11—H11A109.5
C5—C6—H6119.5O1—C11—H11B109.5
C9—C10—C5122.37 (17)H11A—C11—H11B109.5
C9—C10—H10118.8O1—C11—H11C109.5
C5—C10—H10118.8H11A—C11—H11C109.5
C10—C5—C6116.83 (17)H11B—C11—H11C109.5
C10—C5—C2122.02 (16)C4—C3—C2121.3 (2)
C6—C5—C2121.15 (16)C4—C3—H3119.4
O2—N1—O3123.26 (17)C2—C3—H3119.4
O2—N1—C7119.17 (16)C12—C1—C2121.1 (2)
O3—N1—C7117.51 (17)C12—C1—H1119.4
C6—C7—C8122.36 (16)C2—C1—H1119.4
C6—C7—N1116.53 (16)C13—C4—C3120.8 (2)
C8—C7—N1121.11 (17)C13—C4—H4119.6
O1—C8—C9124.48 (16)C3—C4—H4119.6
O1—C8—C7119.30 (16)C13—C12—C1120.7 (2)
C9—C8—C7116.20 (16)C13—C12—H12119.7
C10—C9—C8121.33 (16)C1—C12—H12119.7
C10—C9—H9119.3C4—C13—C12119.1 (2)
C8—C9—H9119.3C4—C13—H13120.5
C1—C2—C3117.07 (19)C12—C13—H13120.5
C9—C10—C5—C60.0 (3)C5—C10—C9—C80.0 (3)
C9—C10—C5—C2179.66 (17)O1—C8—C9—C10177.71 (17)
C7—C6—C5—C100.4 (3)C7—C8—C9—C100.3 (3)
C7—C6—C5—C2179.97 (16)C10—C5—C2—C1144.19 (19)
C5—C6—C7—C80.7 (3)C6—C5—C2—C136.2 (3)
C5—C6—C7—N1179.67 (15)C10—C5—C2—C336.6 (3)
O2—N1—C7—C6149.8 (2)C6—C5—C2—C3143.06 (19)
O3—N1—C7—C627.5 (2)C1—C2—C3—C40.9 (3)
O2—N1—C7—C830.6 (3)C5—C2—C3—C4178.4 (2)
O3—N1—C7—C8152.12 (18)C3—C2—C1—C120.3 (3)
C11—O1—C8—C90.1 (3)C5—C2—C1—C12178.99 (19)
C11—O1—C8—C7178.07 (16)C2—C3—C4—C130.3 (4)
C6—C7—C8—O1177.44 (16)C2—C1—C12—C131.0 (3)
N1—C7—C8—O12.1 (2)C3—C4—C13—C121.0 (4)
C6—C7—C8—C90.7 (3)C1—C12—C13—C41.6 (4)
N1—C7—C8—C9179.73 (16)
Acknowledgements top

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

references
References top

Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Marques, A. T., Silva, J. A., Silva, M. R., Beja, A. M., Justino, L. L. G. & Sobral, A. J. F. N. (2008). J. Chem. Crystallogr. 38, 295–299.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Pourali, A. R. & Fatemi, F. (2010). Chin. Chem. Lett. 21, 1283–1286.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.