supplementary materials


rk2307 scheme

Acta Cryst. (2012). E68, m55-m56    [ doi:10.1107/S1600536811053311 ]

catena-Poly[[(diaquacalcium)-bis([mu]-2-fluorobenzoato)-1':1[kappa]3O:O,O';1:1''[kappa]3O,O':O] 2,2'-bipyridine hemisolvate]

B.-S. Zhang, J.-L. Lin, X.-F. Jin, R. Huang and L.-L. Luo

Abstract top

In the title compound, {[Ca(C7H4FO2)2(H2O)2]·0.5C10H8N2}n, the CaII atom is coordinated by eigth O atoms from four 2-fluorobenzoate ligands and two water molecules, resulting in a distorted CaO8 square-antiprismatic coordination environment. The 2-fluorobenzoate ligand bridges two symmetry-related CaII atoms, giving rise to a chain structure extending along [100]. The distances between the Ca atom and its two symmetry-related counterparts are 4.054 (2) and 4.106 (2) Å. The polymeric chains are connected by classical O-H...N hydrogen bonds into a layer structure parallel to (010). The layers are connected by non-classical C-H...F hydrogen bonds into a three-dimensional supramolecular structure. O-H...O and C-H...O interactions also occur. The uncoordinated 2,2'-bipyridine molecule is located on a centre of symmetry at the mid-point of the bond between the two heterocycles. One of the two benzene rings is disordered over two sites with occupancy factors of 0.60 and 0.40.

Comment top

A metal ions with 2-fluorobenzoato ligands can form, among others, mononuclear, dinuclear, one-dimensional chain complexes (Zhang et al., 2005a, b; Zhang, 2006, 2008; Jin, 2011). Only a few reports of one-dimensional chain structure complexes includinng uncoordinated 2,2'-bipyridine molecules have been published.

In this paper we would like to report the synthesis, molecular and crystal structures of an one-dimensional chain complex including 2-fluorobenzoato, 2,2'-bipyridine and calcium(II). The crystal structure of title compound is similar to previously published structures (Zhang, 2009; Karipides et al., 1988). Within the title compound, each CaII ion is coordinated by eight O atoms from two water molecules and four carboxyl groups of 2-fluorobenzoic acid anions in a distorted square-antiprismayic geometry. Two µ3-carboxyl group of the 2-fluorobenzoic anions bridges two symmetry related calcium(II) atoms giving rise to an one-dimensional chain structure extending along the [1 0 0] direction, with Ca–O bond lengths in the range of 2.381 (4)Å to 2.726 (4)Å. Separation between Ca1 and Ca1i, Ca1 and Ca1ii [symmetry codes: (i) -x, 2-y, 1-z; (ii) 1-x, 2-y, 1-z] are 4.054 (2)Å and 4.106 (2)Å (Fig. 1). The polymeric chains are connected via O1–H1A···N1 hydrogen bonds interactions between the coordinates water and 2,2'-bipyridine molecules in to a two dimensional layer structure parallel to (0 1 0) (Fig.2). The middle of bond C5–C5iii [symmetry code: (iii) -x, 2-y, -z] of non-coordinated 2,2'-bipyridine molecule is located in center of symmetry position. The layers are connected by C10–H10···F2v [symmetry code: (v) -x, 3-y, 1-z] weak hydrogen bonds interactions in to a three-dimensional supramolecular structure (Fig. 2). The O1–H1A···N1 and C10–H10···F2v bond lengths are 2.835 (5)Å and 3.281 (2)Å, the O1–H1A···N1 and C10–H10···F2v bond angles are 133° and 136°.

Related literature top

For other metal complexes with the 2-fluorobenzoato ligand, see: Zhang et al. (2005a,b); Zhang (2006, 2008); Jin (2011). For related structures, see: Zhang (2009); Karipides et al. (1988).

Experimental top

CaCO3 (0.1005 g, 1.00 mmol), 2-fluorobenzoic acid (0.0625 g, 0.45 mmol), 2,2'-bipyridine (0.0512 g, 0.33 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure at 2600 minutes. The solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 2 months afforded colorless block single crystals.

Refinement top

A C-bound H atoms were placed in calculated positions, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O–H distance restraint of 0.82Å and Uiso(H) = 1.5Ueq(O). One - F2 atom and benzene ring (C13-C18) are disordered over their sites with occupancy factors of 0.60 and 0.40.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, 2-y, 1-z; (ii) 1-x, 2-y, 1-z); (iii) -x, 2-y, -z.
[Figure 2] Fig. 2. A packing diagram of the title complex, viewed along the a axis. The O1–H1A···N1 and C10–H10···F2v hydrogen bonds (dashed lines) in the title compound. Symmetry code: (v) -x, 3-y, 1-z.
catena-Poly[[(diaquacalcium)-bis(µ-2-fluorobenzoato)-\ 1':1κ3O:O,O';1:1''κ3O,O':O] 2,2'-bipyridine hemisolvate] top
Crystal data top
[Ca(C7H4FO2)2(H2O)2]·0.5C10H8N2Z = 2
Mr = 432.41F(000) = 446
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9063 (16) ÅCell parameters from 5423 reflections
b = 10.212 (2) Åθ = 3.2–25.0°
c = 12.147 (2) ŵ = 0.39 mm1
α = 94.68 (3)°T = 295 K
β = 104.33 (3)°Block, colourless
γ = 92.98 (3)°0.34 × 0.19 × 0.16 mm
V = 944.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3306 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
graphiteRint = 0.053
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.914, Tmax = 0.939k = 1212
7478 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.071P)2 + 2.358P]
where P = (Fo2 + 2Fc2)/3
3306 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ca(C7H4FO2)2(H2O)2]·0.5C10H8N2γ = 92.98 (3)°
Mr = 432.41V = 944.4 (3) Å3
Triclinic, P1Z = 2
a = 7.9063 (16) ÅMo Kα radiation
b = 10.212 (2) ŵ = 0.39 mm1
c = 12.147 (2) ÅT = 295 K
α = 94.68 (3)°0.34 × 0.19 × 0.16 mm
β = 104.33 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3306 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2136 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.939Rint = 0.053
7478 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.214Δρmax = 0.64 e Å3
S = 1.17Δρmin = 0.73 e Å3
3306 reflectionsAbsolute structure: ?
271 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.23787 (12)0.95355 (10)0.48080 (8)0.0330 (3)
N10.1493 (6)0.8835 (5)0.0638 (4)0.0459 (12)
F10.1676 (5)1.4460 (3)0.4314 (4)0.0647 (11)
O10.2997 (5)0.8935 (4)0.3020 (3)0.0428 (9)
H1B0.39160.91370.28570.064*
H1A0.22740.85450.24730.064*
O20.1035 (5)0.7532 (4)0.5270 (4)0.0517 (11)
H2B0.13940.67930.52990.078*
H2A0.05340.77590.57620.078*
O30.4861 (4)1.1408 (4)0.4636 (3)0.0380 (9)
O40.2084 (4)1.1781 (4)0.4336 (3)0.0436 (10)
O50.3472 (5)1.0424 (4)0.6789 (3)0.0507 (11)
O60.0613 (4)1.0541 (4)0.6240 (3)0.0375 (9)
C10.2246 (8)0.7775 (7)0.0316 (5)0.0537 (15)
H10.30020.73710.08790.064*
C20.1969 (9)0.7248 (7)0.0800 (6)0.0586 (17)
H20.25310.65150.09830.070*
C30.0851 (9)0.7826 (7)0.1626 (5)0.0593 (17)
H30.06310.74860.23860.071*
C40.0047 (9)0.8916 (6)0.1334 (5)0.0529 (15)
H40.07180.93200.18930.063*
C50.0395 (7)0.9410 (5)0.0186 (4)0.0392 (12)
C60.3995 (6)1.3357 (5)0.3811 (4)0.0336 (11)
C70.5394 (7)1.3466 (6)0.3307 (5)0.0419 (13)
H70.60401.27400.32460.050*
C80.5851 (8)1.4617 (7)0.2894 (6)0.0552 (16)
H80.68001.46610.25700.066*
C90.4894 (8)1.5710 (7)0.2961 (5)0.0552 (16)
H90.52141.64880.26920.066*
C100.3478 (8)1.5643 (6)0.3423 (5)0.0533 (16)
H100.28171.63640.34610.064*
C110.3055 (7)1.4467 (5)0.3833 (5)0.0400 (12)
C120.3609 (6)1.2121 (5)0.4293 (4)0.0357 (12)
C130.2199 (18)1.1634 (13)0.7949 (10)0.0336 (19)0.60
C140.1266 (13)1.2791 (9)0.7976 (9)0.0575 (19)0.60
F20.0396 (13)1.3184 (9)0.7157 (9)0.106 (3)0.60
C150.145 (3)1.358 (2)0.898 (2)0.086 (4)0.60
H150.08371.43370.89660.103*0.60
C160.245 (4)1.331 (3)0.996 (2)0.098 (5)0.60
H160.25341.38581.06270.117*0.60
C170.339 (4)1.220 (3)0.9984 (15)0.077 (4)0.60
H170.41031.20051.06760.093*0.60
C180.3310 (17)1.1353 (13)0.8991 (9)0.046 (2)0.60
H180.39731.06240.90220.056*0.60
C13'0.210 (2)1.1874 (17)0.8095 (12)0.0336 (19)0.40
C14'0.103 (3)1.292 (2)0.7984 (19)0.0575 (19)0.40
H14A0.02971.30320.72770.069*0.40
C15'0.105 (4)1.379 (2)0.893 (2)0.086 (4)0.40
H15A0.03351.44830.88570.103*0.40
C16'0.215 (7)1.361 (4)0.999 (2)0.098 (5)0.40
H16A0.21651.41951.06210.117*0.40
C17'0.322 (5)1.257 (3)1.0098 (16)0.077 (4)0.40
H17A0.39571.24561.08050.093*0.40
C18'0.3201 (18)1.1702 (12)0.9152 (10)0.046 (2)0.40
F2'0.4186 (11)1.0508 (9)0.9175 (6)0.053 (2)0.40
C190.2072 (6)1.0851 (5)0.6954 (4)0.0365 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0245 (5)0.0387 (6)0.0370 (6)0.0046 (4)0.0087 (4)0.0071 (4)
N10.042 (3)0.055 (3)0.040 (3)0.005 (2)0.009 (2)0.006 (2)
F10.055 (2)0.047 (2)0.110 (3)0.0161 (16)0.048 (2)0.019 (2)
O10.0347 (19)0.059 (3)0.0338 (19)0.0002 (17)0.0097 (16)0.0018 (17)
O20.039 (2)0.043 (2)0.085 (3)0.0101 (17)0.031 (2)0.023 (2)
O30.0280 (17)0.044 (2)0.045 (2)0.0104 (16)0.0109 (16)0.0129 (17)
O40.0304 (18)0.036 (2)0.071 (3)0.0020 (15)0.0215 (18)0.0185 (19)
O50.0291 (18)0.078 (3)0.046 (2)0.0059 (19)0.0136 (17)0.005 (2)
O60.0214 (16)0.048 (2)0.041 (2)0.0007 (15)0.0059 (15)0.0017 (16)
C10.050 (3)0.063 (4)0.050 (3)0.012 (3)0.012 (3)0.011 (3)
C20.063 (4)0.061 (4)0.056 (4)0.014 (3)0.021 (3)0.002 (3)
C30.074 (4)0.060 (4)0.043 (3)0.007 (3)0.015 (3)0.005 (3)
C40.071 (4)0.048 (4)0.038 (3)0.002 (3)0.012 (3)0.002 (3)
C50.036 (3)0.045 (3)0.035 (3)0.002 (2)0.009 (2)0.002 (2)
C60.030 (2)0.032 (3)0.039 (3)0.001 (2)0.008 (2)0.008 (2)
C70.038 (3)0.042 (3)0.050 (3)0.006 (2)0.015 (3)0.014 (3)
C80.052 (3)0.062 (4)0.059 (4)0.001 (3)0.025 (3)0.019 (3)
C90.060 (4)0.057 (4)0.055 (4)0.000 (3)0.023 (3)0.018 (3)
C100.056 (4)0.036 (3)0.065 (4)0.009 (3)0.007 (3)0.017 (3)
C110.035 (3)0.042 (3)0.049 (3)0.004 (2)0.017 (2)0.009 (2)
C120.024 (2)0.047 (3)0.034 (3)0.002 (2)0.003 (2)0.005 (2)
C130.033 (3)0.026 (5)0.044 (4)0.004 (3)0.022 (3)0.018 (4)
C140.049 (4)0.057 (5)0.078 (5)0.003 (4)0.037 (4)0.008 (4)
F20.101 (6)0.097 (7)0.122 (7)0.025 (5)0.026 (6)0.016 (6)
C150.073 (11)0.059 (7)0.141 (9)0.013 (5)0.078 (8)0.042 (7)
C160.088 (14)0.095 (14)0.114 (8)0.034 (8)0.068 (8)0.075 (8)
C170.066 (8)0.110 (17)0.048 (5)0.032 (8)0.023 (5)0.044 (6)
C180.050 (4)0.060 (7)0.025 (4)0.017 (5)0.014 (3)0.027 (4)
C13'0.033 (3)0.026 (5)0.044 (4)0.004 (3)0.022 (3)0.018 (4)
C14'0.049 (4)0.057 (5)0.078 (5)0.003 (4)0.037 (4)0.008 (4)
C15'0.073 (11)0.059 (7)0.141 (9)0.013 (5)0.078 (8)0.042 (7)
C16'0.088 (14)0.095 (14)0.114 (8)0.034 (8)0.068 (8)0.075 (8)
C17'0.066 (8)0.110 (17)0.048 (5)0.032 (8)0.023 (5)0.044 (6)
C18'0.050 (4)0.060 (7)0.025 (4)0.017 (5)0.014 (3)0.027 (4)
F2'0.050 (5)0.070 (6)0.035 (4)0.017 (4)0.001 (4)0.016 (4)
C190.032 (3)0.039 (3)0.040 (3)0.002 (2)0.011 (2)0.007 (2)
Geometric parameters (Å, °) top
Ca1—O12.381 (4)C6—C111.390 (7)
Ca1—O6i2.386 (3)C6—C71.394 (7)
Ca1—O3ii2.396 (3)C6—C121.483 (7)
Ca1—O42.418 (4)C7—C81.380 (8)
Ca1—O22.426 (4)C7—H70.9300
Ca1—O52.427 (4)C8—C91.388 (9)
Ca1—O62.662 (4)C8—H80.9300
Ca1—O32.726 (4)C9—C101.372 (9)
Ca1—C192.904 (5)C9—H90.9300
Ca1—C122.935 (6)C10—C111.393 (8)
Ca1—Ca1i4.054 (2)C10—H100.9300
Ca1—Ca1ii4.106 (2)C13—C191.373 (13)
Ca1—H2A2.7683C13—C181.411 (14)
N1—C11.338 (8)C13—C141.428 (11)
N1—C51.349 (7)C14—F21.1740
F1—C111.358 (6)C14—C151.380 (18)
O1—H1B0.8200C15—C161.32 (2)
O1—H1A0.8200C15—H150.9300
O2—H2B0.8200C16—C171.39 (2)
O2—H2A0.8200C16—H160.9300
O3—C121.267 (6)C17—C181.410 (15)
O3—Ca1ii2.396 (3)C17—H170.9300
O4—C121.253 (6)C18—H180.9300
O5—C191.266 (6)C13'—C14'1.3900
O6—C191.266 (6)C13'—C18'1.3900
O6—Ca1i2.386 (3)C13'—C191.660 (17)
C1—C21.376 (9)C14'—C15'1.3900
C1—H10.9300C14'—H14A0.9300
C2—C31.360 (9)C15'—C16'1.3900
C2—H20.9300C15'—H15A0.9300
C3—C41.374 (9)C16'—C17'1.3900
C3—H30.9300C16'—H16A0.9300
C4—C51.399 (8)C17'—C18'1.3900
C4—H40.9300C17'—H17A0.9300
C5—C5iii1.474 (11)C18'—F2'1.4796
O1—Ca1—O6i86.09 (12)C19—O5—Ca198.8 (3)
O1—Ca1—O3ii77.46 (13)C19—O6—Ca1i163.8 (3)
O6i—Ca1—O3ii152.43 (14)C19—O6—Ca187.8 (3)
O1—Ca1—O490.21 (14)Ca1i—O6—Ca1106.69 (13)
O6i—Ca1—O477.91 (13)N1—C1—C2123.9 (6)
O3ii—Ca1—O4123.52 (13)N1—C1—H1118.0
O1—Ca1—O2104.41 (15)C2—C1—H1118.0
O6i—Ca1—O275.11 (13)C3—C2—C1118.3 (6)
O3ii—Ca1—O287.62 (13)C3—C2—H2120.8
O4—Ca1—O2148.15 (13)C1—C2—H2120.8
O1—Ca1—O5147.97 (13)C2—C3—C4119.8 (6)
O6i—Ca1—O5124.39 (13)C2—C3—H3120.1
O3ii—Ca1—O577.36 (13)C4—C3—H3120.1
O4—Ca1—O587.44 (15)C3—C4—C5119.1 (6)
O2—Ca1—O593.99 (15)C3—C4—H4120.4
O1—Ca1—O6157.37 (12)C5—C4—H4120.4
O6i—Ca1—O673.31 (13)N1—C5—C4121.3 (5)
O3ii—Ca1—O6125.15 (12)N1—C5—C5iii116.6 (6)
O4—Ca1—O676.64 (12)C4—C5—C5iii122.1 (6)
O2—Ca1—O679.65 (13)C11—C6—C7115.6 (5)
O5—Ca1—O651.10 (11)C11—C6—C12124.3 (5)
O1—Ca1—O375.15 (12)C7—C6—C12120.2 (5)
O6i—Ca1—O3123.49 (12)C8—C7—C6122.1 (5)
O3ii—Ca1—O373.59 (13)C8—C7—H7118.9
O4—Ca1—O350.07 (11)C6—C7—H7118.9
O2—Ca1—O3160.92 (12)C7—C8—C9120.0 (6)
O5—Ca1—O378.98 (13)C7—C8—H8120.0
O6—Ca1—O3108.30 (12)C9—C8—H8120.0
O1—Ca1—C19166.43 (14)C10—C9—C8120.1 (6)
O6i—Ca1—C1998.95 (14)C10—C9—H9119.9
O3ii—Ca1—C19102.15 (14)C8—C9—H9119.9
O4—Ca1—C1978.65 (14)C9—C10—C11118.4 (6)
O2—Ca1—C1989.09 (15)C9—C10—H10120.8
O5—Ca1—C1925.52 (13)C11—C10—H10120.8
O6—Ca1—C1925.84 (12)F1—C11—C6120.0 (5)
O3—Ca1—C1991.65 (13)F1—C11—C10116.3 (5)
O1—Ca1—C1280.01 (14)C6—C11—C10123.7 (5)
O6i—Ca1—C1299.63 (13)O4—C12—O3121.1 (5)
O3ii—Ca1—C1299.11 (13)O4—C12—C6120.9 (4)
O4—Ca1—C1224.73 (12)O3—C12—C6118.0 (4)
O2—Ca1—C12172.69 (14)O4—C12—Ca153.8 (3)
O5—Ca1—C1284.77 (15)O3—C12—Ca168.0 (3)
O6—Ca1—C1294.05 (13)C6—C12—Ca1168.8 (3)
O3—Ca1—C1225.52 (11)C19—C13—C18121.3 (9)
C19—Ca1—C1286.70 (15)C19—C13—C14121.9 (9)
O1—Ca1—Ca1i124.48 (10)C18—C13—C14116.8 (9)
O6i—Ca1—Ca1i38.98 (9)F2—C14—C15115.4 (10)
O3ii—Ca1—Ca1i154.16 (10)F2—C14—C13123.5 (5)
O4—Ca1—Ca1i74.03 (9)C15—C14—C13120.9 (12)
O2—Ca1—Ca1i74.38 (9)C16—C15—C14122.7 (14)
O5—Ca1—Ca1i85.42 (9)C16—C15—H15118.7
O6—Ca1—Ca1i34.33 (7)C14—C15—H15118.7
O3—Ca1—Ca1i122.07 (9)C15—C16—C17118.8 (13)
C19—Ca1—Ca1i60.03 (10)C15—C16—H16120.6
C12—Ca1—Ca1i98.33 (11)C17—C16—H16120.6
O1—Ca1—Ca1ii72.73 (9)C16—C17—C18122.1 (15)
O6i—Ca1—Ca1ii152.07 (10)C16—C17—H17118.9
O3ii—Ca1—Ca1ii39.55 (9)C18—C17—H17118.9
O4—Ca1—Ca1ii84.04 (9)C17—C18—C13118.6 (12)
O2—Ca1—Ca1ii127.10 (10)C17—C18—H18120.7
O5—Ca1—Ca1ii75.25 (9)C13—C18—H18120.7
O6—Ca1—Ca1ii122.98 (9)C14'—C13'—C18'120.0
O3—Ca1—Ca1ii34.04 (7)C14'—C13'—C19119.4 (5)
C19—Ca1—Ca1ii98.16 (11)C18'—C13'—C19120.6 (5)
C12—Ca1—Ca1ii59.56 (10)C13'—C14'—C15'120.0
Ca1i—Ca1—Ca1ii151.36 (6)C13'—C14'—H14A120.0
O1—Ca1—H2A120.1C15'—C14'—H14A120.0
O6i—Ca1—H2A73.1C16'—C15'—C14'120.0
O3ii—Ca1—H2A96.2C16'—C15'—H15A120.0
O4—Ca1—H2A135.5C14'—C15'—H15A120.0
O2—Ca1—H2A16.5C17'—C16'—C15'120.0
O5—Ca1—H2A82.1C17'—C16'—H16A120.0
O6—Ca1—H2A63.2C15'—C16'—H16A120.0
O3—Ca1—H2A160.0C16'—C17'—C18'120.0
C19—Ca1—H2A73.5C16'—C17'—H17A120.0
C12—Ca1—H2A157.2C18'—C17'—H17A120.0
Ca1i—Ca1—H2A62.1C17'—C18'—C13'120.0
Ca1ii—Ca1—H2A133.4C17'—C18'—F2'125.0
C1—N1—C5117.5 (5)C13'—C18'—F2'114.8
Ca1—O1—H1B124.9O5—C19—O6121.1 (5)
Ca1—O1—H1A123.3O5—C19—C13117.2 (7)
H1B—O1—H1A111.6O6—C19—C13121.7 (7)
Ca1—O2—H2B129.3O5—C19—C13'120.8 (7)
Ca1—O2—H2A106.1O6—C19—C13'118.0 (7)
H2B—O2—H2A115.3C13—C19—C13'4.8 (6)
C12—O3—Ca1ii167.0 (3)O5—C19—Ca155.7 (3)
C12—O3—Ca186.5 (3)O6—C19—Ca166.4 (3)
Ca1ii—O3—Ca1106.41 (13)C13—C19—Ca1168.7 (8)
C12—O4—Ca1101.4 (3)C13'—C19—Ca1167.9 (8)
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+2, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.822.212.835 (5)133
O1—H1B···O5ii0.822.022.782 (5)154
O2—H2A···O4i0.822.122.741 (5)132
O2—H2B···F1iv0.822.623.363 (5)151
C7—H7···O2ii0.932.603.189 (7)122
C10—H10···F2v0.932.543.281 (2)136
Symmetry codes: (ii) −x+1, −y+2, −z+1; (i) −x, −y+2, −z+1; (iv) x, y−1, z; (v) −x, −y+3, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.822.212.835 (5)133
O1—H1B···O5i0.822.022.782 (5)154
O2—H2A···O4ii0.822.122.741 (5)132
O2—H2B···F1iii0.822.623.363 (5)151
C7—H7···O2i0.932.603.189 (7)122
C10—H10···F2iv0.932.543.281 (2)136
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y−1, z; (iv) −x, −y+3, −z+1.
Acknowledgements top

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Jin, Z.-N. (2011). Acta Cryst. E67, m440.

Karipides, A., McKinney, C. & Peiffer, K. (1988). Acta Cryst. C44, 46–48.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, B.-S. (2006). Z. Kristallogr. New Cryst. Struct. 221, 355-356.

Zhang, B.-S. (2008). Acta Cryst. E64, m1055–m1056.

Zhang, B.-S. (2009). Acta Cryst. E65, m1500.

Zhang, B.-S., Zeng, X.-R., Fang, X.-N. & Huang, C.-F. (2005b). Z. Kristallogr. New Cryst. Struct. 220, 141-142.

Zhang, B.-S., Zeng, X.-R., Yu, Y.-Y., Fang, X.-N. & Huang, C.-F. (2005a). Z. Kristallogr. New Cryst. Struct. 220, 75-76.