supplementary materials


rk2322 scheme

Acta Cryst. (2012). E68, o204    [ doi:10.1107/S1600536811053803 ]

2,9,10-Trimethoxydibenzo[b,d]oxepin-7(6H)-one

Y.-J. Hou, S.-L. Song, W.-Y. Chu and Z.-Z. Sun

Abstract top

The title compound, C17H16O5, was prepared through a cyclization reaction of 2-(3',4',5-trimethoxybiphenyl-2-yloxy)acetyl chloride. The two benzene rings form a dihedral angle of 34.55 (5)°. The crystal structure does not feature any hydrogen bonds.

Comment top

The methoxydibenzooxepin–one derivatives have important antiviral activity and cause attention to new synthetic methods and investigation of similar compounds (Yoshioka et al., 1978). Many methoxydibenzooxepin–one derivatives directly prepared from methoxy 2–(biphenyl–2–yloxy) acetyl chloride (Suau et al., 1996; Tandon et al., 2009). The 2,9,10–trimethoxydibenzo[b,d]oxepin–7(6H)–one, (Fig. 1), was prepared from the previously synthesized 2–(3',4',5–trimethoxy biphenyl–2–yloxy) acetyl chloride.

The dihedral angle between the benzene ring (C1–C6) and benzene ring (C7–C12) is 34.55 (5)°. In the crystal structure neither classical nor non–classical hydrogen bonds are found.

Related literature top

For general background on the synthesis and properties of 2,9,10–trimethoxydibenzo[b,d]oxepin–7(6H)–one, see: Suau et al. (1996); Tandon et al. (2009). For the biological activity of methoxydibenzooxepin–one derivatives, see: Yoshioka et al.(1978).

Experimental top

To a solution of 2–(3',4',5–trimethoxybiphenyl–2–yloxy) acetyl chloride (5 mmol) in 20 ml trifluoroacetic anhydride was added anhydrous zinc chloride (1 mmol). After stirring the reaction mixture for 12 h at reflux temperature, the trifluoroacetic anhydride was recovered under reduced pressure and residue was added 20 ml water. The aqueous phases were extracted with 100 ml ethyl acetate. The organic extracts were washed with 200 ml saturated aqueous sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified via silica gel chromatography (5% ethyl acetate / hexane) to afford a translucent solid in a yield of 80%. Crystals suitable for single–crystal X–ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 28%. Analysis found: C 67.9, H 5.3%; C17H16O5 requires: C 67.9, H 5.4%. 1H NMR (400 MHz, DMSO) 7.33 (s, 1H), 7.25 (d, J = 2.9 Hz, 1H), 7.16 (t, J = 4.4 Hz, 1H), 6.96 (dd, J = 8.7, 2.9 Hz, 1H), 4.75 (s, 2H), 3.97 (s, 1H), 3.86 (s, 1H), 3.82 (s, 2H), 2.50 (s, 2H).

Refinement top

All H atoms were geometrically positioned and refined using a riding model with C—H = 0.93Å, Uiso(H) = 1.2Ueq(C) for aromatic atoms, C—H = 0.97Å, Uiso(H) = 1.2Ueq(C) for CH2 atoms, C—H = 0.96Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
2,9,10–trimethoxydibenzo[b,d]oxepin–7(6H)–one top
Crystal data top
C17H16O5F(000) = 632
Mr = 300.30Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3123 reflections
a = 11.5474 (10) Åθ = 2.7–25.0°
b = 8.3776 (7) ŵ = 0.10 mm1
c = 14.8801 (13) ÅT = 295 K
β = 93.607 (1)°Block, colorless
V = 1436.6 (2) Å30.32 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD
diffractometer
3517 independent reflections
Radiation source: fine–focus sealed tube2517 reflections with I > 2σ(I)
graphiteRint = 0.022
φ– and ω–scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1513
Tmin = 0.968, Tmax = 0.976k = 1111
11231 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
3517 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H16O5V = 1436.6 (2) Å3
Mr = 300.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5474 (10) ŵ = 0.10 mm1
b = 8.3776 (7) ÅT = 295 K
c = 14.8801 (13) Å0.32 × 0.26 × 0.24 mm
β = 93.607 (1)°
Data collection top
Bruker SMART APEX II CCD
diffractometer
3517 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2517 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.976Rint = 0.022
11231 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.26 e Å3
S = 1.05Δρmin = 0.18 e Å3
3517 reflectionsAbsolute structure: ?
202 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64848 (13)0.13216 (17)0.18464 (10)0.0430 (3)
C20.53334 (14)0.09007 (19)0.18643 (11)0.0509 (4)
H20.48420.15080.22000.061*
C30.48957 (14)0.0412 (2)0.13909 (11)0.0515 (4)
H30.41150.06820.13980.062*
C40.56459 (14)0.13171 (19)0.09053 (11)0.0477 (4)
C50.67990 (14)0.08725 (18)0.08744 (11)0.0466 (4)
H50.72860.14750.05330.056*
C60.72465 (13)0.04551 (17)0.13424 (9)0.0409 (3)
C70.84963 (13)0.08803 (16)0.13366 (9)0.0396 (3)
C80.93022 (13)0.03654 (16)0.12805 (10)0.0426 (3)
H80.90370.14140.12650.051*
C91.04778 (13)0.00803 (16)0.12484 (10)0.0422 (3)
C101.08923 (13)0.15007 (17)0.12771 (10)0.0415 (3)
C111.01109 (13)0.27300 (16)0.13109 (10)0.0428 (3)
H111.03800.37760.13090.051*
C120.89187 (13)0.24533 (16)0.13480 (10)0.0403 (3)
C130.81824 (14)0.39121 (18)0.13527 (11)0.0480 (4)
C140.71248 (14)0.39826 (18)0.18854 (11)0.0520 (4)
H14A0.72090.48710.23020.062*
H14B0.64570.42010.14750.062*
C150.41610 (16)0.3191 (2)0.04808 (13)0.0642 (5)
H15A0.40050.33880.10970.096*
H15B0.40460.41560.01390.096*
H15C0.36440.23810.02370.096*
C161.09330 (15)0.28365 (17)0.11482 (13)0.0558 (4)
H16A1.05400.31010.16780.084*
H16B1.15960.35180.11080.084*
H16C1.04140.29830.06250.084*
C171.25317 (15)0.32212 (19)0.12655 (14)0.0615 (5)
H17A1.21950.38020.07580.092*
H17B1.33580.31700.12300.092*
H17C1.23540.37540.18110.092*
O10.68972 (10)0.25851 (13)0.23796 (7)0.0506 (3)
O20.53211 (10)0.26715 (14)0.04357 (9)0.0641 (4)
O31.13016 (9)0.12153 (12)0.11976 (9)0.0558 (3)
O41.20699 (9)0.16530 (12)0.12625 (8)0.0527 (3)
O50.84540 (10)0.51664 (13)0.09494 (9)0.0650 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (8)0.0459 (8)0.0414 (8)0.0005 (6)0.0062 (6)0.0007 (6)
C20.0459 (9)0.0560 (9)0.0521 (9)0.0024 (7)0.0131 (7)0.0034 (7)
C30.0379 (8)0.0620 (10)0.0553 (10)0.0048 (7)0.0089 (7)0.0018 (8)
C40.0464 (9)0.0482 (8)0.0488 (9)0.0073 (7)0.0056 (7)0.0026 (7)
C50.0430 (9)0.0461 (8)0.0514 (9)0.0021 (7)0.0097 (7)0.0063 (7)
C60.0408 (8)0.0408 (7)0.0416 (8)0.0006 (6)0.0056 (6)0.0007 (6)
C70.0395 (8)0.0395 (7)0.0400 (7)0.0004 (6)0.0043 (6)0.0003 (6)
C80.0433 (8)0.0332 (7)0.0515 (9)0.0012 (6)0.0044 (6)0.0002 (6)
C90.0411 (8)0.0335 (7)0.0519 (9)0.0031 (6)0.0025 (6)0.0009 (6)
C100.0368 (8)0.0371 (7)0.0508 (8)0.0004 (6)0.0038 (6)0.0027 (6)
C110.0431 (9)0.0325 (7)0.0530 (9)0.0019 (6)0.0036 (7)0.0004 (6)
C120.0410 (8)0.0360 (7)0.0439 (8)0.0033 (6)0.0037 (6)0.0000 (6)
C130.0451 (9)0.0390 (8)0.0593 (10)0.0050 (6)0.0006 (7)0.0025 (7)
C140.0510 (10)0.0454 (8)0.0598 (10)0.0061 (7)0.0050 (8)0.0094 (7)
C150.0527 (11)0.0744 (12)0.0652 (11)0.0214 (9)0.0006 (9)0.0076 (9)
C160.0530 (10)0.0328 (8)0.0812 (12)0.0027 (7)0.0023 (9)0.0053 (7)
C170.0462 (10)0.0419 (9)0.0967 (14)0.0078 (7)0.0061 (9)0.0024 (9)
O10.0527 (7)0.0506 (6)0.0492 (6)0.0018 (5)0.0093 (5)0.0104 (5)
O20.0521 (7)0.0640 (8)0.0771 (8)0.0187 (6)0.0115 (6)0.0191 (6)
O30.0422 (6)0.0329 (5)0.0922 (9)0.0045 (4)0.0037 (6)0.0005 (5)
O40.0371 (6)0.0360 (5)0.0852 (8)0.0015 (4)0.0064 (5)0.0038 (5)
O50.0541 (7)0.0410 (6)0.1010 (10)0.0040 (5)0.0143 (7)0.0148 (6)
Geometric parameters (Å, °) top
C1—C21.377 (2)C11—C121.401 (2)
C1—O11.3889 (18)C11—H110.9300
C1—C61.395 (2)C12—C131.4891 (19)
C2—C31.385 (2)C13—O51.2595 (19)
C2—H20.9300C13—C141.498 (2)
C3—C41.388 (2)C14—O11.4159 (19)
C3—H30.9300C14—H14A0.9700
C4—O21.3724 (19)C14—H14B0.9700
C4—C51.386 (2)C15—O21.414 (2)
C5—C61.394 (2)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.487 (2)C15—H15C0.9600
C7—C81.4042 (19)C16—O31.4237 (17)
C7—C121.4049 (19)C16—H16A0.9600
C8—C91.382 (2)C16—H16B0.9600
C8—H80.9300C16—H16C0.9600
C9—O31.3504 (17)C17—O41.4177 (18)
C9—C101.4081 (19)C17—H17A0.9600
C10—O41.3674 (18)C17—H17B0.9600
C10—C111.372 (2)C17—H17C0.9600
C2—C1—O1118.73 (13)C11—C12—C13115.30 (12)
C2—C1—C6121.28 (14)C7—C12—C13124.89 (14)
O1—C1—C6119.90 (14)O5—C13—C12121.55 (14)
C1—C2—C3121.03 (15)O5—C13—C14117.05 (13)
C1—C2—H2119.5C12—C13—C14121.30 (14)
C3—C2—H2119.5O1—C14—C13115.23 (13)
C2—C3—C4118.62 (15)O1—C14—H14A108.5
C2—C3—H3120.7C13—C14—H14A108.5
C4—C3—H3120.7O1—C14—H14B108.5
O2—C4—C5115.95 (14)C13—C14—H14B108.5
O2—C4—C3123.86 (15)H14A—C14—H14B107.5
C5—C4—C3120.19 (14)O2—C15—H15A109.5
C4—C5—C6121.63 (14)O2—C15—H15B109.5
C4—C5—H5119.2H15A—C15—H15B109.5
C6—C5—H5119.2O2—C15—H15C109.5
C5—C6—C1117.21 (14)H15A—C15—H15C109.5
C5—C6—C7121.17 (13)H15B—C15—H15C109.5
C1—C6—C7121.56 (13)O3—C16—H16A109.5
C8—C7—C12117.84 (13)O3—C16—H16B109.5
C8—C7—C6117.99 (13)H16A—C16—H16B109.5
C12—C7—C6124.12 (13)O3—C16—H16C109.5
C9—C8—C7121.98 (13)H16A—C16—H16C109.5
C9—C8—H8119.0H16B—C16—H16C109.5
C7—C8—H8119.0O4—C17—H17A109.5
O3—C9—C8125.25 (13)O4—C17—H17B109.5
O3—C9—C10115.14 (13)H17A—C17—H17B109.5
C8—C9—C10119.62 (13)O4—C17—H17C109.5
O4—C10—C11125.97 (13)H17A—C17—H17C109.5
O4—C10—C9115.07 (12)H17B—C17—H17C109.5
C11—C10—C9118.95 (13)C1—O1—C14113.68 (12)
C10—C11—C12121.83 (13)C4—O2—C15117.35 (14)
C10—C11—H11119.1C9—O3—C16117.73 (12)
C12—C11—H11119.1C10—O4—C17117.43 (12)
C11—C12—C7119.74 (13)
Acknowledgements top

We thank the National Natural Science Foundation of China (No. 20872030), Foundation of Heilongjiang Educational Committee (No. 12511383), Key Laboratory of Chemical Engineering Process and Technology for High–efficiency Conversion, College of Heilongjiang Province and Heilongjiang University, China, for supporting this study.

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Suau, R., Lopez–Romero, J. M., Alonso, F. J. & Lobo, C. (1996). Tetrahedron, 52, 11307–11320.

Tandon, V. K., Maurya, H. K., Kumar, B., Kumar, B. & Ram, V. J. (2009). Synlett, 18, 2992–2996.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yoshioka, T., Kitagawa, M., Oki, M., Kubo, S., Tagawa, H. & Ueno, K. (1978). Journal of Medicinal Chemistry, 21, 633–639.