supplementary materials


rz2684 scheme

Acta Cryst. (2012). E68, m68    [ doi:10.1107/S1600536811053864 ]

cis-Bis(acetonitrile-[kappa]N)bis(2,2'-bipyridine-[kappa]2N,N')ruthenium(II) tetrafluoridoborate

Y. Wang, F. Xu and W. Huang

Abstract top

In the cation of the title compound, [Ru(CH3CN)2(C10H8N2)2](BF4)2, the RuII atom is six-coordinated in a distorted octahedral geometry by the N atoms of the two 2,2'-bipyridine (bpy) ligands and two cis-arranged acetonitrile molecules. The dihedral angles formed by the pyridine rings of the bpy ligands are 8.86 (12) and 10.12 (14)°. In the crystal, the cations and anions are linked by C-H...F hydrogen bonds into a three-dimensional network.

Comment top

The structures of cis-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Chattopadhyay et al., 2004), trans-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Cordes et al., 1992), and cis-bis(acetonitrile)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (Heeg et al., 1985; Xu & Huang, 2007) have been reported previously. We present herein the crystal structure of the title compound (I) with the tetrafluoroborate counterions.

The atom-numbering scheme adopted for the title compound is shown in Fig. 1. The ruthenium(II) ion is six-coordinated in a distorted octahedral geometry by the nitrogen atoms form two 2,2'-bipyridine and two cis-arranged acetonitrile molecules. The six Ru—N bond lengths are in the range from 2.042 (4) to 2.060 (4) Å, and are comparable with those reported in the literature. The presence of coordinated acetonitrile molecules and free tetrafluoroborate counterions is confirmed by the characteristic absorptions of its FT–IR spectrum. The N1/C1-C5—N2/C6-C10 and N3/C11-C13—N4/C16-C20 pyridine rings within the 2,2'-bipyridine ligands are tilted by 8.86 (12) and 10.12 (14)°, respectively. In the crystal structure cations and anions are linked by C—H···F hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For the structures of related complexes, see: Chattopadhyay et al. (2004); Cordes et al. (1992); Heeg et al. (1985); Xu & Huang (2007).

Experimental top

The title compound was prepared by our previously reported method (Xu & Huang, 2007) except that sodium tetrafluoroborate was used. Single crystals suitable for X-ray diffraction measurement were obtained after 5 days on slow evaporation of an acetonitrile solution at room temperature. Elemental analysis: calculated for C24H22RuN6B2F8: C 43.08, H 3.31, N 12.56%; found: C 43.29, H 3.62, N 12.34%. Main FT–IR absorptions (KBr plates, cm-1): 3003 (w), 2293 (m), 2252 (s), 1606 (m), 1462 (s), 1421 (s), 1084 (versus), 1038 (versus), 918 (m), 764 (w) and 752 (w).

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms were placed in geometrically idealized positions (C—H = 0.93–0.96 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with displacement ellipsoids drawn at the 30% probability level.
cis-Bis(acetonitrile-κN)bis(2,2'-bipyridine- κ2N,N')ruthenium(II) tetrafluoridoborate top
Crystal data top
[Ru(C2H3N)2(C10H8N2)2](BF4)2F(000) = 1336
Mr = 669.17Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3573 reflections
a = 10.5648 (7) Åθ = 2.6–24.0°
b = 24.0246 (17) ŵ = 0.67 mm1
c = 10.4561 (7) ÅT = 291 K
β = 90.253 (1)°Block, red
V = 2653.9 (3) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4680 independent reflections
Radiation source: fine-focus sealed tube3326 reflections with I > 2σ(I)
graphiteRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.900, Tmax = 0.924k = 1528
13281 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
4680 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ru(C2H3N)2(C10H8N2)2](BF4)2V = 2653.9 (3) Å3
Mr = 669.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5648 (7) ŵ = 0.67 mm1
b = 24.0246 (17) ÅT = 291 K
c = 10.4561 (7) Å0.16 × 0.14 × 0.12 mm
β = 90.253 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3326 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.924Rint = 0.045
13281 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.76 e Å3
S = 0.95Δρmin = 0.41 e Å3
4680 reflectionsAbsolute structure: ?
372 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.25886 (3)0.627135 (14)0.52470 (3)0.04287 (14)
B10.7581 (7)0.7190 (3)0.5614 (8)0.085 (2)
B20.7624 (5)0.4853 (3)0.0278 (7)0.0672 (16)
C10.2611 (4)0.5012 (2)0.5649 (5)0.0582 (12)
H10.31450.50800.63410.070*
C20.2343 (4)0.4471 (2)0.5328 (5)0.0652 (13)
H20.26920.41770.57880.078*
C30.1540 (5)0.4373 (2)0.4303 (5)0.0705 (14)
H30.13510.40100.40600.085*
C40.1029 (4)0.4808 (2)0.3653 (5)0.0629 (12)
H40.04770.47430.29740.075*
C50.1331 (4)0.53449 (18)0.4002 (4)0.0498 (10)
C60.0783 (4)0.5844 (2)0.3409 (4)0.0525 (11)
C70.0095 (4)0.5832 (2)0.2415 (4)0.0639 (13)
H70.03110.54980.20240.077*
C80.0640 (4)0.6321 (3)0.2019 (5)0.0716 (15)
H80.12260.63200.13530.086*
C90.0320 (5)0.6811 (2)0.2603 (5)0.0725 (14)
H90.07060.71430.23680.087*
C100.0588 (4)0.6799 (2)0.3549 (4)0.0612 (12)
H100.08260.71330.39280.073*
C110.4260 (4)0.5845 (2)0.3099 (4)0.0630 (12)
H110.38970.55000.32630.076*
C120.5170 (4)0.5879 (2)0.2173 (5)0.0693 (14)
H120.54130.55640.17190.083*
C130.5713 (4)0.6385 (2)0.1930 (5)0.0685 (14)
H130.63390.64180.13120.082*
C140.5321 (4)0.6844 (2)0.2612 (5)0.0643 (13)
H140.56850.71900.24610.077*
C150.4388 (4)0.67871 (19)0.3518 (4)0.0503 (10)
C160.3859 (4)0.72526 (18)0.4252 (4)0.0510 (10)
C170.4096 (5)0.7811 (2)0.3994 (5)0.0705 (14)
H170.46630.79070.33530.085*
C180.3501 (5)0.8221 (2)0.4676 (5)0.0755 (15)
H180.36590.85940.45030.091*
C190.2667 (4)0.8072 (2)0.5620 (5)0.0659 (13)
H190.22460.83420.60930.079*
C200.2469 (4)0.75165 (19)0.5852 (5)0.0596 (12)
H200.19230.74180.65090.071*
C210.4890 (4)0.6030 (2)0.7128 (5)0.0591 (12)
C220.5932 (4)0.5904 (3)0.8000 (5)0.0837 (17)
H22A0.56040.58360.88410.126*
H22B0.65050.62140.80280.126*
H22C0.63720.55790.77050.126*
C230.0697 (4)0.63709 (18)0.7582 (4)0.0531 (11)
C240.0175 (5)0.6412 (2)0.8654 (5)0.0810 (16)
H24A0.06130.60650.87560.122*
H24B0.07770.67040.84900.122*
H24C0.02910.64960.94210.122*
F10.7366 (4)0.6846 (2)0.4670 (4)0.154 (2)
F20.6838 (7)0.7071 (2)0.6605 (7)0.262 (4)
F30.7452 (4)0.77248 (19)0.5352 (4)0.1427 (17)
F40.8737 (5)0.7071 (2)0.6035 (6)0.204 (3)
F50.7715 (4)0.5405 (2)0.0135 (5)0.168 (2)
F60.8552 (5)0.4701 (2)0.1074 (6)0.187 (2)
F70.7700 (6)0.4581 (3)0.0758 (6)0.225 (3)
F80.6515 (5)0.4717 (2)0.0777 (6)0.185 (2)
N10.2131 (3)0.54494 (15)0.5004 (3)0.0477 (8)
N20.1144 (3)0.63331 (15)0.3949 (3)0.0479 (9)
N30.3868 (3)0.62815 (14)0.3778 (3)0.0472 (8)
N40.3022 (3)0.71070 (15)0.5180 (3)0.0481 (8)
N50.4065 (3)0.61253 (14)0.6479 (3)0.0482 (8)
N60.1371 (3)0.63333 (13)0.6752 (3)0.0474 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0415 (2)0.0481 (2)0.0390 (2)0.00261 (15)0.00032 (14)0.00096 (15)
B10.082 (5)0.071 (5)0.103 (6)0.019 (4)0.017 (4)0.032 (4)
B20.054 (3)0.067 (4)0.081 (4)0.005 (3)0.003 (3)0.004 (3)
C10.060 (3)0.057 (3)0.058 (3)0.006 (2)0.003 (2)0.006 (2)
C20.072 (3)0.059 (3)0.065 (3)0.001 (2)0.006 (3)0.010 (2)
C30.074 (3)0.058 (3)0.079 (4)0.013 (3)0.010 (3)0.012 (3)
C40.061 (3)0.066 (3)0.062 (3)0.006 (2)0.002 (2)0.010 (3)
C50.047 (2)0.058 (3)0.044 (2)0.006 (2)0.0064 (19)0.002 (2)
C60.044 (2)0.069 (3)0.044 (2)0.002 (2)0.0036 (19)0.002 (2)
C70.049 (3)0.093 (4)0.050 (3)0.005 (3)0.001 (2)0.004 (3)
C80.050 (3)0.115 (5)0.049 (3)0.007 (3)0.009 (2)0.015 (3)
C90.064 (3)0.093 (4)0.060 (3)0.012 (3)0.007 (2)0.014 (3)
C100.060 (3)0.065 (3)0.059 (3)0.005 (2)0.001 (2)0.007 (2)
C110.057 (3)0.068 (3)0.064 (3)0.002 (2)0.011 (2)0.005 (2)
C120.058 (3)0.088 (4)0.061 (3)0.012 (3)0.010 (2)0.009 (3)
C130.046 (3)0.105 (4)0.054 (3)0.001 (3)0.010 (2)0.004 (3)
C140.052 (3)0.082 (4)0.058 (3)0.014 (3)0.003 (2)0.005 (3)
C150.040 (2)0.067 (3)0.044 (2)0.005 (2)0.0024 (18)0.004 (2)
C160.049 (2)0.059 (3)0.044 (2)0.010 (2)0.0080 (19)0.003 (2)
C170.078 (3)0.064 (3)0.069 (3)0.019 (3)0.008 (3)0.011 (3)
C180.093 (4)0.055 (3)0.078 (4)0.020 (3)0.007 (3)0.004 (3)
C190.071 (3)0.058 (3)0.069 (3)0.000 (2)0.014 (3)0.004 (2)
C200.070 (3)0.057 (3)0.052 (3)0.007 (2)0.003 (2)0.000 (2)
C210.056 (3)0.064 (3)0.057 (3)0.006 (2)0.001 (2)0.003 (2)
C220.062 (3)0.113 (5)0.076 (4)0.020 (3)0.013 (3)0.008 (3)
C230.056 (3)0.060 (3)0.043 (3)0.005 (2)0.002 (2)0.000 (2)
C240.074 (3)0.110 (4)0.060 (3)0.010 (3)0.021 (3)0.014 (3)
F10.199 (5)0.114 (4)0.148 (4)0.013 (3)0.070 (4)0.047 (3)
F20.362 (9)0.134 (4)0.290 (8)0.038 (5)0.217 (8)0.024 (5)
F30.185 (5)0.087 (3)0.156 (4)0.012 (3)0.004 (3)0.004 (2)
F40.183 (5)0.177 (5)0.251 (6)0.055 (4)0.123 (5)0.088 (4)
F50.161 (4)0.103 (4)0.240 (6)0.021 (3)0.084 (4)0.052 (3)
F60.187 (5)0.150 (4)0.222 (6)0.007 (3)0.107 (5)0.065 (4)
F70.207 (6)0.311 (9)0.158 (5)0.039 (5)0.047 (4)0.139 (6)
F80.138 (4)0.132 (4)0.285 (7)0.007 (3)0.095 (4)0.011 (4)
N10.0453 (18)0.053 (2)0.045 (2)0.0040 (16)0.0028 (16)0.0007 (16)
N20.0408 (18)0.062 (2)0.041 (2)0.0011 (16)0.0002 (15)0.0067 (17)
N30.0438 (18)0.057 (2)0.041 (2)0.0028 (17)0.0023 (15)0.0027 (16)
N40.0497 (19)0.052 (2)0.043 (2)0.0035 (17)0.0043 (16)0.0003 (16)
N50.049 (2)0.052 (2)0.044 (2)0.0002 (17)0.0007 (17)0.0009 (16)
N60.047 (2)0.051 (2)0.045 (2)0.0016 (16)0.0025 (17)0.0013 (16)
Geometric parameters (Å, °) top
Ru1—N62.042 (4)C10—N21.330 (5)
Ru1—N22.043 (3)C10—H100.9300
Ru1—N12.049 (4)C11—N31.333 (5)
Ru1—N52.049 (4)C11—C121.369 (6)
Ru1—N32.051 (3)C11—H110.9300
Ru1—N42.060 (4)C12—C131.369 (7)
B1—F11.307 (8)C12—H120.9300
B1—F31.320 (8)C13—C141.378 (7)
B1—F41.328 (7)C13—H130.9300
B1—F21.334 (9)C14—C151.377 (6)
B2—F71.268 (7)C14—H140.9300
B2—F81.326 (7)C15—N31.361 (5)
B2—F61.335 (7)C15—C161.468 (6)
B2—F51.337 (8)C16—N41.361 (5)
C1—N11.346 (6)C16—C171.391 (6)
C1—C21.372 (7)C17—C181.371 (7)
C1—H10.9300C17—H170.9300
C2—C31.384 (7)C18—C191.373 (7)
C2—H20.9300C18—H180.9300
C3—C41.356 (6)C19—C201.372 (6)
C3—H30.9300C19—H190.9300
C4—C51.378 (6)C20—N41.344 (6)
C4—H40.9300C20—H200.9300
C5—N11.366 (5)C21—N51.126 (5)
C5—C61.467 (6)C21—C221.458 (6)
C6—N21.358 (5)C22—H22A0.9600
C6—C71.390 (6)C22—H22B0.9600
C7—C81.371 (7)C22—H22C0.9600
C7—H70.9300C23—N61.129 (5)
C8—C91.366 (7)C23—C241.457 (6)
C8—H80.9300C24—H24A0.9600
C9—C101.375 (6)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
N6—Ru1—N292.02 (13)N3—C11—H11118.3
N6—Ru1—N190.96 (13)C12—C11—H11118.3
N2—Ru1—N179.18 (14)C13—C12—C11118.7 (5)
N6—Ru1—N590.50 (13)C13—C12—H12120.7
N2—Ru1—N5173.93 (14)C11—C12—H12120.7
N1—Ru1—N595.25 (13)C12—C13—C14119.2 (4)
N6—Ru1—N3174.73 (13)C12—C13—H13120.4
N2—Ru1—N389.67 (13)C14—C13—H13120.4
N1—Ru1—N394.26 (13)C15—C14—C13119.6 (5)
N5—Ru1—N388.31 (13)C15—C14—H14120.2
N6—Ru1—N495.53 (13)C13—C14—H14120.2
N2—Ru1—N494.13 (13)N3—C15—C14121.1 (4)
N1—Ru1—N4170.86 (13)N3—C15—C16114.9 (4)
N5—Ru1—N491.12 (13)C14—C15—C16124.0 (4)
N3—Ru1—N479.36 (14)N4—C16—C17120.3 (4)
F1—B1—F3116.2 (7)N4—C16—C15115.3 (4)
F1—B1—F4105.7 (6)C17—C16—C15124.3 (4)
F3—B1—F4111.9 (7)C18—C17—C16120.5 (5)
F1—B1—F2110.5 (7)C18—C17—H17119.7
F3—B1—F2108.1 (6)C16—C17—H17119.7
F4—B1—F2103.9 (8)C17—C18—C19119.0 (5)
F7—B2—F8105.6 (6)C17—C18—H18120.5
F7—B2—F6110.1 (6)C19—C18—H18120.5
F8—B2—F6109.6 (6)C20—C19—C18118.6 (5)
F7—B2—F5114.3 (7)C20—C19—H19120.7
F8—B2—F5110.6 (5)C18—C19—H19120.7
F6—B2—F5106.7 (5)N4—C20—C19123.5 (5)
N1—C1—C2122.7 (4)N4—C20—H20118.2
N1—C1—H1118.7C19—C20—H20118.2
C2—C1—H1118.7N5—C21—C22178.3 (5)
C1—C2—C3118.4 (5)C21—C22—H22A109.5
C1—C2—H2120.8C21—C22—H22B109.5
C3—C2—H2120.8H22A—C22—H22B109.5
C4—C3—C2119.9 (5)C21—C22—H22C109.5
C4—C3—H3120.0H22A—C22—H22C109.5
C2—C3—H3120.0H22B—C22—H22C109.5
C3—C4—C5119.8 (5)N6—C23—C24179.3 (5)
C3—C4—H4120.1C23—C24—H24A109.5
C5—C4—H4120.1C23—C24—H24B109.5
N1—C5—C4121.1 (4)H24A—C24—H24B109.5
N1—C5—C6114.5 (4)C23—C24—H24C109.5
C4—C5—C6124.2 (4)H24A—C24—H24C109.5
N2—C6—C7120.9 (4)H24B—C24—H24C109.5
N2—C6—C5114.9 (4)C1—N1—C5118.1 (4)
C7—C6—C5124.1 (4)C1—N1—Ru1127.0 (3)
C8—C7—C6119.1 (5)C5—N1—Ru1114.7 (3)
C8—C7—H7120.4C10—N2—C6118.3 (4)
C6—C7—H7120.4C10—N2—Ru1126.7 (3)
C9—C8—C7119.9 (5)C6—N2—Ru1114.9 (3)
C9—C8—H8120.0C11—N3—C15118.0 (4)
C7—C8—H8120.0C11—N3—Ru1126.7 (3)
C8—C9—C10118.3 (5)C15—N3—Ru1115.3 (3)
C8—C9—H9120.8C20—N4—C16118.0 (4)
C10—C9—H9120.8C20—N4—Ru1126.7 (3)
N2—C10—C9123.3 (5)C16—N4—Ru1114.8 (3)
N2—C10—H10118.3C21—N5—Ru1177.5 (4)
C9—C10—H10118.3C23—N6—Ru1179.6 (4)
N3—C11—C12123.4 (5)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.932.503.179 (7)130
C7—H7···F6ii0.932.473.373 (7)165
C9—H9···F4iii0.932.423.299 (7)158
C12—H12···F80.932.543.459 (7)167
C14—H14···F2iv0.932.333.238 (8)164
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+3/2, z−1/2; (iv) x, −y+3/2, z−1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.932.503.179 (7)130
C7—H7···F6ii0.932.473.373 (7)165
C9—H9···F4iii0.932.423.299 (7)158
C12—H12···F80.932.543.459 (7)167
C14—H14···F2iv0.932.333.238 (8)164
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+3/2, z−1/2; (iv) x, −y+3/2, z−1/2.
Acknowledgements top

WH would like to acknowledge the National Natural Science Foundation of China (No. 21171088) for financial aid.

references
References top

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). Transition Met. Chem. 29, 1–6.

Cordes, A. W., Durham, B., Pennington, W. T., Kuntz, B. & Allen, L. (1992). J. Crystallogr. Spectrosc. Res. 22, 699–704.

Heeg, M. J., Kroener, R. & Deutsch, E. (1985). Acta Cryst. C41, 684–686.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xu, F. & Huang, W. (2007). Acta Cryst. E63, m2114.